CONTENTS

Preface	3
Lab 1 Download and install R and R commander	4
1. 1 Download and Install R	4
1. 2 Install the R Commander Package	7
1.3 Starting R Commander	13
1.4 Trouble Shooting	14
Lab 2 First Taste of R and R Commander	16
2.1 Data Entry	16
2.1.1 Manually Enter	16
2.1.2 Import From an Existing Data File	16
2.2 Explore Data Using R Commander	20
2. 2.1 Obtain Numerical Summaries	22
2.2.2 Obtain Graphs	24
Lab 3 Probability Distributions (Binomial and Normal)	34
3.1 Binomial Distribution	34
3.1.1 Steps to Apply the Binomial Formula	34
3.1.2 Example: Application of Binomial Distribution	34
3.2 Normal Distribution	36
3.2.1 Find the Probabilities Related to Normal Distributions	37
3.2.2 Find the Quantiles of Normal Distribution	39
3.3 Generate Simple Random Samples from a Certain Distribution	40
3.3.1 Setting a Seed	40
3.3.2 Generate Simple Random Sample from a Normal Distribution	42
3.3.3 Generate Simple Random Sample from an Exponential Distribution	43
Lab 4 Distribution of the sample mean & Central Limit Theorem	45
4.1 Obtain the Distribution of the Sample Mean From a Certain Distribution	45
4.2 Distribution of the Sample Mean When the Population Distribution is Normal	45
4.3 Distribution of the Sample Mean When the Population Distribution is Uniform	48
4.4 Distribution of the Sample Mean When the Population Distribution is Exponential	50
4.5 Distribution of the Sample Mean When the Population Distribution is Chi-Square	52

4.6 Central Limit Theorem For the Sample Mean	54
4.7 Central Limit Theorem For the Sample Proportion	55
Lab 5 Confidence Interval and Hypothesis Tests for One Mean	60
5.1 One-Sample $m{z}$ Test and Interval When the Population Standard Deviation is Known	60
5.2 One-Sample $m{t}$ Test and Interval When the Population Standard Deviation is Unknown	61
5.3 Relation Between Confidence Interval and Hypothesis Tests	66
Lab 6 Confidence Interval & Hypothesis Tests for Two Means	67
6.1 Two-Sample t Test and t Interval Based on Two Independent Samples	67
6.1.1 Non-pooled Two-Sample $m{t}$ Test and $m{t}$ Interval	67
6.1.2 Pooled Two-Sample $m{t}$ Test and $m{t}$ Interval	73
6.1.3 Non-Pooled Versus Pooled Two-Sample <i>t</i> Test	75
6.2 Paired t Test and t Interval Based on Paired Sample	76
Lab 7 Inferences for Population Proportions	80
7.1 One-Proportion z Test & z Interval Based on One Sample	80
7.2 Two-Proportion z Test & z Interval Based on Two Independent Samples	83
7.2.1 Two-Proportion Z Interval	83
7.2.2 Two-Proportion Z Test	84
Lab 8 Chi-Square Tests	
8.1 Chi-Square Goodness-of Fit Test for one Categorical or Discrete Variable	
8.2 Chi-square Independence Test	92
Lab 9 Simple Linear Regression	95
Lab 10 One-Way ANOVA	98

STAT 151 Lab Manual in R

PREFACE

This lab manual was prepared for the lab component of the online STAT 151 course offered at MacEwan University. R is an open-source implementation of the S language. It works on multiple computing platforms and can be freely downloaded. This lab manual introduces how to conduct descriptive statistics and inferential statistics using R and R commander (an R package). Descriptive statistics include drawing figures such as histogram, boxplot, normal Q-Q plot, scatter plot and obtaining statistical summaries such as mean, median, standard deviation, and quartiles. Inferential statistics cover one-sample z test and interval, one-sample t test and t interval, two-sample t test and t interval, one-proportion z test and interval, two-proportion z test and interval, chi-square tests, one-way ANOVA F test, and simple linear regression. This lab manual also illustrates how to obtain probabilities and cumulative probabilities and quantiles based on binomial distributions and normal distributions.

LAB 1 DOWNLOAD AND INSTALL R AND R COMMANDER

1. 1 DOWNLOAD AND INSTALL R

You can google the downloading website:

 Visit <u>https://www.google.com</u> and search for "r cran". The first item retrieved is the website to download R.

a. For Windows users, click "Download R 4.1.0 for Windows".

R-4.1.0 for Windows (32/64 bit)

- Does R run under my version of Windows?
- How do I update packages in my previous version of R?
- Should I run 32-bit or 64-bit R?

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.

Other builds

- · Patches to this release are incorporated in the r-patched anapshot build.
- A build of the development version (which will eventually become the aext major release of R) is available in the <u>r-devel mapshot build</u>
 Previous releases

Note to webmissters: A stable link which will redirect to the current Windows binary release is <u>CRAN MIRROR>bin/windows/bnsc/release.html</u>.

Last change: 2021-05-18

b. For Mac users, click "R-4.1.0.pkg". Make sure that you install XQuartz at <u>https://www.xquartz.org/</u> as well. You could find it in "Applications->Utilities" after installation.

R for macOS This directory contains binaries for a base distribution and packages to run on macOS. Robonus for old Mac OS X systems (furrugh Mac OS X 10.5) and PowerPC Macs can be found in the old directory Note: Although we take precontions when assembling binaries, please use the normal precautions with downloaded executables Package binarias for R variants older than 3.2.0 are only available from the CRAN sectory at more of such versions should adjust the CRAN mirror satting (second sector) accordingly. B 4 1.0 "Camp Fontanezen" released on 2021/05/18 Please check the SHA1 sheeksam of the downloaded image to masse that it has not been tumpered with or corrupted during the mirroring process. For enample type Latest release. R-6.1.0 binory for masON 10.11 (High Serve) and higher, Intel 64 hit build, segred and netwined package. Commin: R-4.1.0 framework, R.app GUI 1.76 in 64-hit for Intel Macs. Tel/TE 8.6.6 X11 libraries and Tecinfrs 6.7. The latter two components are optimal and can be ommitted when choosing "curtom install", they are only needed if you want to use the totats R package or build package documentation from sources. R-4.1.0.pkg (notarized and signed) R41.01 attax) requires XQuerte to be installed since it is no longer part of OS X. Always re-install XQuarte when upgrading your macOS to a new major version This release supports latel Maca, but it is also known to work using Rosetta2 on M1-based Maca. For setive Apple silicon armol4 binary say below Important: this release uses Xcode 12.4 and GNU Fortran 8.2. If you wish to compile R packages from sources, you may used to download GNU Fortran 8.2 - are the tools directory. R-4.1.0-arm/it.pkg (notarized and signed) 950-bash 72% hitting balance (1997) R 4.1.0 binary for macOS 11 (Big Sur) and higher, Apple ulticon arm64 build, signal and notwined package. Contains R 4.1.0 framework; R.app GUI 1.76 for Apple silicon Macs (M1 and higher), Tel/Tk 8.6.11 X11 liberrise and Tecinfo 6.7. Important: this version does NOT work on older latel-based Macs. use of X11 (including talts) requires XQuartz. Always re-install XQuartz when appraising your macOS to a new major version. This release uses Xcode 12.4 and experimental GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. If you wish to compile R packages from sources, you may need to devealend GNU Portran 11 mm84 fork. c. Please refer to Dr. John 's guidelines for trouble shooting at https://socialsciences.mcmaster.ca/ifox/Misc/Rcmdr/installation-notes.html.

- 4. If the most current release does not work well with the R commander package "Rcmdr" or the operating system of your machine does not support the most current release, you could install one of the earlier releases. For example, here are the steps to install previous release R 3.6.3 for Windows and R 3.3.3 for Mac instead.
 - a. For Windows users, click "Previous releases" to get an earlier version of R. Choose "R 3.6.3 (February, 2020)". And then click "Download R 3.6.3 for Windows"

Last change: 2020-06-22

Last change: 2020-02-29

b. For Mac users, click "R-3.3.3.pkg" to install version R 3.3.3. Make sure that you install XQuartz at https://www.xquartz.org/ as well.

(←) → ୯ @	💿 🔒 https://com.t-project.org/bin/macau/	回 (##) … 回 ☆
	R for Mac OS)	
This directory contains binaries for 1.7.1) here. Releases for old Mac C	r a base distribution and packages to run on Mac OS X (release 10.6 and shove). Mac OS 8.6 to 9.2 (and Ma 25 X systems (through Mac OS X 10.5) and PowerPC Macs can be found in the <u>old</u> directory.	c OS X 10.1) are no longer supported bit you can find the last supported release of ${\mathbb R}$ for t
Note: CRAN does not have Mac O	S X systems and cannot check these binaries for viruses. Although we take precautions when assembling b	naries, please use the normal preamtions with downloaded executables.
Package biancies for R versions of	fer than 3.2.0 see only available from the CRAN archive so users of such versions should adjust the CRAN	mirror setting (auty-ac//acan-acata/es.a-parcjeat.arg) accordingly
	H 4.0.2 "Taking Off Again" raless	ed nn 2020/06/22
Pieese check the MD5 checkman o	f the downloaded image to ensure that it has not been tempered with or corrupted during the mirroring proc	ani. For assangéa type
in the Terminal application to pead physical	the MDS checksons for the R-4.0.2 pkg image. On Mse OS X 10.7 and later yes can also validate the signs 4.0.2 , $\mu\mu\mu$	flac using
	Labert release:	
Rol.0.2 phy (notarized and signed) Billinks betaberpositionalitations (cs. 64ME)	B 4.9.3 binary for mas(OS 10.13 (High Sorra) and higher, signed and n Tel Tk 6.6.6 X11 libraries and Texinfo 6.7. The latter two components you want to use file taits R package or build package documentation I	turized package. Contains R 40.0 firmework, R.app GUI 1.72 in 64-bit for Intel Mass, re optional and can be emmitted when choosing "custom install", they are only namled if rom sources.
	Note: the use of X11 (including t=1.ts) requires XQueetr to be installer macOS to a new major version.	since it is no longer part of OS X. Always re-install XQuartz when upgrading your
	Importants this release uses Xeeds 10.1 and UNU Fortran 8.2. If you v - are the <u>tools</u> directory.	vish to compile R packages from cources, you will need to download and GNU Fortras 3.2
NEWS (for Mac GUT)	News features and changes in the R.app Mac GUI	
Mac-GUI-1.72 tanga Bhonas Chintolog Cabal Sectional	Senaces for the R.app OUI 1.72 for Mac OS X. This file is only needed the INSTALL file for further instructions.	if you want to join the development of the OUL it is not intended for regular nears. Read
Note: Previous R versions for El C	apitan can be found in the <u>pl-orgitizeTene</u> directory.	
	Binazies for legacy CS X systems:	
R-3.4.3 m pkg (signed) Bickes all without the second secon	R 3.6.3 binary for OS X 10.11 (EI Capita) and higher, signed package, Binnue and Textuff 5.2. The latter two coreponents are optional and a the units R package or build pockage documentation from sources.	Contains R 3.6.3 finanework, R.app GUI 1.70 in 64-bit for Intel Mass, Tel/Tk 8.6.6 X11 is to committed when choosing "contons install", they are only mached if you want to use
R-111 pig MT has the constant which constant MAI has be with statistic with the constant (c. TIME)	B 3.3.3 binary for Moc OS X 10.9 (Mavericki) and higher, signed pack X11 [Braries and Texinfo 5.2. The latter two components are optioned a the tails R package or built package documentation from sources.	rge. Contains R 3.5.3 finanework, R app GUI 1.69 in 64-bit for Intel Mass, Tol Tk 8.6.0 nd can be committed when choosing "custom install", it is only needed if you want to use
	Note: the use of VIT limitedian to the Dimension Witness to be installed	show it is no important of City X. A hours as install Villanty when approxima part Cit X.

1. 2 INSTALL THE R COMMANDER PACKAGE

There are two ways to install the R Commander package.

The first way to install R Commander (an easier way):

1. Once you have installed R, open it by double-clicking on the icon.

2. A window called "R Console" will open.

RGui (32-bit)

RGui (32-bit)

File Edit View Misc Packages Windows Help

3. At the > command prompt, type the command install.packages("Rcmdr"), and click "enter".

File Edit View Misc Packages Windows Help 📽 🚰 🖬 📾 🚭 🖓 🚳 -R R Console R version 4.1.0 (2021-05-18) -- "Camp Pontanezen" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: 1386-w64-mingw32/1386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. [Previously saved workspace restored] > install.packages("Romdr")

4. R will ask you to select a CRAN mirror; pick the first, "0-Cloud" mirror, or a mirror site near you.

5. Once the R commander package is installed, to load the **Rcmdr** package, just type the command library(Rcmdr) beside the > prompt and click "enter". The name of the package is case sensitive.

The second way to install the R commander package:

- 1. Once you have installed R, open it by double-clicking on the icon.
- 2. A window called "R Console" will open.
- 3. Click "Packages" on the menu bar, select "Install package(s)..." in the drop-down menu.

```
RGui (32-bit)
File Edit View Misc Packages Windows Help
    2
                       Load package ...
           6
       i≩|
                       Set CRAN mirror...
                                                                             - - ×
 R Console
                       Select repositories...
                       Install package(s)...
 R version 4.1.0
                       Update packages...
 Copyright (C) 202
                                                         Computing
 Platform: 1386-we
                       Install package(s) from local files...
 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
 Type 'license()' or 'licence()' for distribution details.
   Natural language support but running in an English locale
 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.
 Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.
 [Previously saved workspace restored]
 >
```

4. Click "OK" or select a location closest to you in the "HTTPS CRAN mirror" drop-down menu, and click "OK".

RGui (B2-bit)

File Edit View Misc Packages Windows Help

5. Scroll down in the "Packages" drop-down menu, select the package "Rcmdr" and click "OK".

File Edit View Misc Packages Windows Help	Packages
F	rcitoid RClickhouse RClimacell
R version 4.1.0 (2021-05-18) "Camp Pontanezen"	rClinicalCodes rclipboard RClone RclusTool
Platform: 1386-w64-mingw32/1386 (32-bit)	rCMA rcmdcheck Rcmdr
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.	RcmdrMisc RcmdrPlugin.aRnova RcmdrPlugin.BiclustGUI RcmdrPlugin.BWS1
Natural language support but running in an English locale	RcmdrPlugin.coin RcmdrPlugin.DCCV
R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.	RcmdrPlugin.DCE RcmdrPlugin.depthTools RcmdrPlugin.DoE RcmdrPlugin.EACSPIR
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.	RcmdrPlugin.EBM RcmdrPlugin.EcoVirtual RcmdrPlugin.Export RcmdrPlugin.EZR
[Previously saved workspace restored]	RemdrPlugin.FuzzyClust RemdrPlugin.GWRM
<pre>> utils:::menuInstallPkgs() Please select a CRAN mirror for use in this session > utils:::menuInstallPkgs()</pre>	RcmdrPlugin.HH RcmdrPlugin.IPSUR RcmdrPlugin.KMggplot2 RcmdrPlugin.ifstat
¢	RcmdrPlugin.MA RcmdrPlugin.MPAStats
	RemdrPlugin.NMBU RemdrPlugin.orloca RemdrPlugin.PcaRobust RemdrPlugin.plotByGroup PromdrPlugin.plotByGroup

6. Once the package is installed, the message "package 'Rcmdr' successfully unpacked and MD5 sums checked" should be shown in the R Console window.

RGui (32-bit)

File Edit View Misc Packages Windows Help

```
R Console
R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
  Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Previously saved workspace restored]
> utils:::menuInstallPkgs()
--- Please select a CRAN mirror for use in this session ---
trying URL 'https://cloud.r-project.org/bin/windows/contrib/4.1/Rcmdr 2.7-1.zip'
Content type 'application/zip' length 4451930 bytes (4.2 MB)
downloaded 4.2 MB
package 'Rcmdr' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
       C:\Users\suw3\AppData\Local\Temp\RtmpcnGr4a\downloaded packages
>
```

7. Once the R commander package is installed, to load the **Rcmdr** package, just type the command library(Rcmdr) and click "enter".

1.3 STARTING R COMMANDER

If R is not already open, open it by clicking on its icon. To open R Commander, at the > prompt type **library("Rcmdr")** and press Enter. If an error message says "lack of some packages, would you like to install those packages", click "Yes" and select "download from CRAN".

You should see a large new window pop up, labeled R Commander.

Data set Wee data set Wee data set Model # -No scher mo		oden Distribution	Foole Help		
In Markdown	Data set: •No octive dataset=	🔏 Edit data set 🔄	View data set	Model;	*No active model+
utput	Script R Markdown				
stpuf					
utput					
utput					
	Neut				Subr
estages					
	Hages	ursion of the B	Commander 3	forial i	est, undes

You are now ready to analyze your data with R Commander. If you close this window while R is still open, you can start R Commander again by entering the command "Commander()" in R Console. Entering "library(Rcmdr)" in this situation will not work unless you close R and open it again.

1.4 TROUBLE SHOOTING

One possible way to fix the problem is to copy the error message to Google and you might find a remedy. Here are some common problems when installing R commander, the "Rcmdr" package.

- Error messages say something like "Warning in install.packages("Rcmdr") : 'lib = "C:/Program Files/R/R-3.6.3/library" is not writable".
 - a. Run R with Administrator privileges by right-clicking on the R shortcut and selecting 'Run as Administrator'.
 - b. Double check whether you have any anti-virus program or security setting blocking installing software from so-called unknown developers. If yes, you might need to set your default secure cran mirror as trustable site.
- 2. Any error related to the **tcltk** package:
 - a. You might have installed the most current version of R, but your system has not been updated. Try installing a previous version, say R 3.6.3 for Windows users and R 3.3.3 for Mac users.
 - b. For Mac users, make sure that XQuartz has been installed.
- 3. Something like .zip file is not writable. Change the path before installing Rcmdr:

.libPaths("C:\\Program Files\\R\\R-3.6.3\\library")

4. Make sure that you run XQuartz before running R. Restart your computer if opening XQuartz behand does not work.

Attaching package: 'carData'

The following objects are masked from 'package:car':

Guyer, UN, Vocab

lattice theme set by effectsTheme()
See ?effectsTheme for details.
xcode-select: note: no developer tools were found at '/Applications/Xcode.ap
requesting install. Choose an option in the dialog to download the command 1
developer tools.
Error : .onAttach failed in attachNamespace() for 'Remdr', details:
 call: structure(.External(.C_dotTclObjv, objv), class = "tclObj")
 error: [tcl] invalid command name "image".
In addition: Warning messages:
1: running command ''/usr/bin/otool' -L '/Library/Frameworks/R.framework/
Resources/library/tcltk/libs//tcltk.so'' had status 1

2: In fun(libname, pkgname) : couldn't connect to display ":0" Error: package or namespace load failed for 'Rendr'

LAB 2 FIRST TASTE OF R AND R COMMANDER

This lab introduces how to enter data into R and explore the data using figures and numerical summaries.

2.1 DATA ENTRY

There are several ways to enter data into R: manually enter, import from an existing data file, export from a built-in R package.

2.1.1 Manually Enter

- 1. Start a new data set through **Data** → **New data set...**
- Enter a new name for the data set, say "usedcar" → OK
 Note: the name cannot have space and special symbols such as \$
 Note: R is case-sensitive hence usedcar≠Usedcar
- 3. A data editor window where you can type in your data using a typical spreadsheet format. You can type rowname (say car), variable names (say price and age). Each row corresponds to one independent observation. For example, the spreadsheet below shows the price (in \$1000) and the age (in year) of four used cars. The first car is 1 year old and its price is 14 (\$1000).
- 4. Press Enter or click "Add row" if you need more rows.
- 5. Click "Add column" if you need more variables.
- 6. Click "OK".

Data set:	«No active dataset»	dit data set 🔄 View	data set Modet 2 «No a	scrive model -
inger in markes	awn			
_	R Data Editor: car			le le le
	File Edit Help			
uboi .	Add row Add c	nmula		
		rowname	Frice (\$1000)	Age(years)
	1	1	14	1
	2.	2	13	1
	37	3	13	з
	4	4	10	4

2.1.2 Import From an Existing Data File

The existing data can be SPSS, Minitab, text, excel, SAS, and STATA data sets. We demonstrate with text, SPSS and Excel files. Data files used in this manual will be available in Blackboard (or another location specified by your instructor) and students can download them there.

Import from a text file

The data file needs to be organized as a classic data frame. Each column represents a single variable, e.g. price. Each row represents one individual. Header information needs to be contained to a single row.

For this example, please download the file called car.txt from online.

1. Date→Import data→from text file, clipboard or URL...

- 2. Enter the name (say car) for the data set and click "OK".
- 3. Follow the path to where you stored the text file named car.txt is stored, and click "open".
- 4. The imported data set "car" is now an active data set. Click "View data set" to view data.

R Commander	
e Edit Data Statistics Graphs Models Distributions Tools Help	
🕈 Data set 👘 UsedCar 🛛 🖉 Edit data set 🔂 View data set 🛛 Model: 🔻 <no active="" m<="" th=""><th>iodel></th></no>	iodel>
Script R Markdown	
<pre>sedCar <- read.table("M:/stat151/data/car.txt", header=TRUE, s na.strings="NA", dec=".", strip.white=TRUE)</pre>	ep="",
	0
Dutput	Submit
na.strings="NA", dec=".", strip.white=TRUE)	age price 1 1 3990 2 1 13495 3 12999 4 9500 5 4 10495 6 5995 7 5 9495 8 6 6999 9 7 6950 10 7 2850
	1 I.G. I.L
lessages	11 8 6999
Messages (Gui with the single-document interface (SDI); see ?Commander.	11 8 6999 12 8 5995 18 10 4950
Messages (Gui with the single-document interface (SDI); see ?Commander. 3] NOTE: The dataset UsedCar has 15 rows and 2 columns.	11 8 6999 12 8 5995 13 10 4950 14 10 4495

Note: R commander was developed as an easy to use graphical user interface (GUI) for R language. The task can be also carried out by typing the commands directly in the R Console window. The corresponding commands are shown in the R Script sub-window. And the corresponding computer output is shown in the Output sub-window. In the Messages sub-window, it tells us that the data set has 15 rows and 2 columns.

Import from an SPSS file

For this example, please download the file called 8variable_salehome.sav from online. This data set gives the price of 88 sale homes and had columns that detail eight features of the homes.

1. Date→Import data→from SPSS data set...

- 2. Enter the name (say Home) that you want to call the data set and click "OK".
- 3. Go to the path where the sav file 8variable_salehome.sav is stored and click "open".

4. The imported data set "Home" is now an active data set. Click "View data set" to view the data.

Import from an Excel file

For this example, please download the file called marathon.xlsx from online.

1. Data→Import data→from Excel data set...

- 2. Enter the name (say Marathon) for the data set and click "OK".
- Go to the path where the Excel data file is stored and select the file *marathon.xlsx* and click "open".
- 4. The imported data set "Marathon" is now an active data set. Click "View data set" to view the data.

R R Commander		_ 🗆 🗙
File Edit Data Statistics Graphs Models Distributions Tools Help		
R Data set Marathon Zedit data set View data set Modet 2 «No artive model»	R Marathon	
R Script R Markdown	Year Men 1	Women Difference
	1 1978 132.2	152.5 20.3
AND ADDRESS OF THE AND ADDRESS ADDRE	3 1979 131.7	147.6 15.9
Marathon <- readx1("M:/statisi/data/Marathon.xiex", rownames=rALSE,	1 1990 129.7	145.7 16.0
header=TRUE, ha="", Sheet="Sheet1", StringsAsractors=TRUE)	1901 128.2	145.5 17.3
	5 1982 129.5	147.2 17.7
21	5 1983 129.0	147.0 18.0
1. Automatica de la construcción de	7 1984 134.9	149.5 14.6
Outwint	3 1985 131.6	148.6 17.0
Conjust	1986 131.1	148.1 17.0
	10 1987 131.0	150.3 19.3
> Marathon <- readXL("M:/stat151/data/Marathon.xlsx", rownames=FALSE,	11 1988 128.3	148.1 19.8
+ header=TRUE, na="", sheet="Sheet1", stringsAsFactors=TRUE]	1 1989 128.0	145.5 17.5
	1990 132.7	150.8 18.1
	14 1991 129.5	147.5 18.0
	1992 129.5	144.7 15.2
	TE1993 130.1	146.4 16.3
	1994 131.4	147.6 16.2
	10 1995 131.0	148.1 17.1
	10 1996 129.9	148,3 18,4
	1997 128.2	148.7 20.5
	1998 128.8	145.3 16.5
	1999 129.2	145.1 15.9
	2000 130.2	145.8 15.6
Vie	2001 127.7	144.4 16.7
Weiners -	2002 128.1	145.9 17.8
messages	202003 130.5	142.5 12.0
RGui with the single-document interface (SDI); see VCommander.	2004 129.5	143.2 13.7
[3] NOTE: The dataset Marathon has 29 rows and 4 columns.	2005 129.5	144.7 15.2
	2006 130.0	145.1 15.1

This data set gives the winning times (in minutes) for men and women in the New York City Marathon between 1978 and 2006 (<u>www.nycmarathon.org</u>). The last column gives the difference in winning time between female and male.

2.2 EXPLORE DATA USING R COMMANDER

Basically, there are two types of statistics: descriptive statistics and inferential statistics.

- **Descriptive statistics** consists of numerical and graphical methods for organizing and summarizing the sampled data. One only focuses on the sampled data.
- Inferential statistics consists of methods for drawing conclusions about the population based on information obtained from the sampled data. It uses the sampled data to make estimates, decisions, predictions, or other generalizations about the population. For inferential study, look for the key words "estimate for all" or "prediction for all".

This lab session focuses on how to obtain descriptive statistics using R commander. Statistics is all about data. And data are information about a group of individuals organized in variables. There are two types of variables: qualitative/categorical and quantitative variables. The quantitative variable can be further classified as either continuous or discrete.

- **Qualitative variable**: A non-numerically valued variable that classifies subjects into different categories, such as "Name" and "Sex". The values of qualitative variables are not numbers. A qualitative variable is also called a **categorical variable**.
- **Quantitative variable**: A numerically valued variable (e.g., "Number of hours/day on internet"). There are two types of quantitative variable --- continuous and discrete.
 - **Continuous variable**: A quantitative variable whose possible values form some interval of numbers (e.g., height, length of feet, salary, age). Technically speaking, continuous

variables have an arbitrary number of decimal places. For any two possible values, we can always find some value in between.

• **Discrete variable**: A quantitative variable whose possible values can be listed (e.g., number of siblings, number of phone calls within an hour.)

The following table summarizes the descriptive methods for some standard statistical tasks.

	De	scriptive Statistics
Task	Graphical	Numerical
Display one	pie chart	frequency table
qualitative variable	bar chart	relative frequency table
Display two qualitative variables	side-by-side pie or bar chart	contingency table
Display one quantitative variable	histogram dot plot boxplot stem-leaf plot	5-number summary (mean, SD) (median, IQR)
Display two quantitative variables	scatter plot	correlation coefficient r and r^2 (covered in Chapter 14)
Display one qualitative and one quantitative variables	side-by-side histogram boxplot stem-leaf plot	5-number summary (mean, SD) (median, IQR) by groups

The 8variable_salehome.xlsx price dataset that you can find and download from online will be used as a demo in this section. There are eight variables of different data types. Size, area, age, and price can be treated as quantitative continuous; bath (# of bathrooms) and stories (# of stories) can be treated as quantitative discrete, and pool and roof are qualitative (categorical). We first import the data set into R commander.

1. Data→Import data→from Excel data set...

- 2. Enter the name (say Home) for the data set and click "OK".
- 3. Go to the path where the Excel data file is stored and select the file **8variable_salehome.xlsx** and click "open".
- 4. The imported data set "8variable_salehome.xlsx" is now an active data set named Home in R. Click "View data set" to view the data.

R	Home		121	_				
	1120	pool	NECA.	age	bath	stories	roof	price
10	1865	Yes	9509.4	18	2.5	1	Non-tile	145950
3	2576	Yes	11076.9	15	3.0	2	Non-tile	160000
	2576	Yes	10168.8	15	3.0	2	Non-tile	184000
31	2056	Yes	13430.4	15	2.0	1	Non-tile	152000
	1730	Yes	11083.5	17	2.0	1	Non-tile	149000
	1882	Yes	10559.8	18	2.5	1	Non-tile	132000
	2102	Yes	14533.7	16	2.0	1	Non-tile	150000
	2461	Yes	9596.2	6	3.0	1	Tile	190000
	2461	Yes	10231.5	6	3.0	1	Tile	226000
10	1514	Yes	10911.5	16	2.0	1	Non-tile	120000
10	1994	Yes	13605.7	17	2.0	1	Non-tile	141000
16	2455	Yes	14704.1	16	3.5	1	Non-tile	169000
13	1730	Yes	14623.4	17	2.0	1	Non-tile	138600
14	1655	No	9747.7	18	2.5	1	Non-tile	124000
15	1865	Yes	9932.9	18	2.5	1	Non-tile	130000
16	1882	Yes	10274.4	18	2.5	1	Tile	150000
	2718	Yes	9675.3	6	3.5	1	Tile	243000
18	1882	Yes	11825.1	18	2.5	1	Non-tile	137900
19	1882	No	14831.5	18	2,5	1	Non-tile	111500
	1994	Yes	16122.5	17	2.0	1	Non-tile	152000
21	2214	Yes	12358.3	18	2.5	1	Non-tile	147000
22	2718	Yes	16214.1	6	3.5	1	Tile	245000
58	2576	Yes	12055.5	15	3.0	2	Non-tile	175000
	3124	No	9497.6	6	3.5	1	Tile	242500
25	2128	Yes	9823.7	15	2.5	1	Non-tile	152000
	1655	Yes	10520.5	18	2.5	1	Non-tile	137000
27	2214	No	10739.0	18	2.5	1	Non-tile	148000
	2576	Yes	11087.7	15	3.0	2	Non-tile	175000
29	2928	Yes	16458.6	10	3.5	1	Tile	210000
	2576	Yes	10368.5	15	3.0	2	Non-tile	169900

2. 2.1 Obtain Numerical Summaries

We can obtain the numerical summaries for each variable of the active data set:

For quantitative variables, it gives the mean and five number summaries, i.e., minimum, 1st quartile, median (2nd quartile), 3rd, and maximum. Take age for example: the average age of those 88 sale homes is 14.14 years with a median 16 years. The newest 25% of homes are between 6 to 9.75 years old; another 25% are between 9.75 and 16; another 25% are between 16 and 18; the oldest 25% are 18 years old.

1.

2. For qualitative (categorical) variables, it gives the frequencies (number of times) for which values occur. Take Pool for example: 18 out of 88 homes do not have a swimming pool and 70 have. We can obtain the numerical summaries for a single **quantitative** variable.

- Statistics → Summaries → Numerical summaries...
 Note: numerical summaries are only for quantitative variables. For categorical variables, we use frequency distributions to summarize counts of the variable values (see below).
- 2. Select the variable of interest, say age, from the list and click OK.

a Numerical Summan	ers.	-	Paras and in	-
Data Statistics				
Variables (pick one c	r moré)			
age				
area				
price				
size				
stones				
Summarize by grou	pr.			

Output:

mean sd IQR 0% 25% 50% 75% 100% n 14.13636 4.823748 8.25 6 9.75 16 18 18 88

Understand the output:

mean	Sample mean, measure of central tendency
sd	Sample standard deviation, measure of spread (variation)
IQR	Inter-quartile range=3 rd quartile-1 st quartile, the middle 50% of the observations are within IQR
0%	Minimum value, 0 th percentile
25%	1 st quartile. The value below which 25 percent of the observations may be found.
50%	2 nd quartile, the median. The value below which 50 percent of the observations
	may be found.
75%	3 rd quartile. The value below which 75 percent of the observations may be found.
100%	Maximum value
n	Sample size, number of individuals in the sample

We can obtain the numerical summaries for a single **qualitative (categorical)** variable.

1. Statistics \rightarrow Summaries \rightarrow Frequency distributions...

2. Select the variable of interest, say pool, from the list and click OK.

R Frequency Distributions	Output: counts: pool	 Counts are the frequencies.
pool roof Chi-square goodness-of-fit test (for one variable only) Help Reset VK Kancel Apply	No Yes 18 70 percentages: pool No Yes 20.45 79.55	2. Percentages are the relative frequencies multiplied by 100 $=\frac{counts}{n} \times 100.$

We can obtain the numerical summaries of a single quantitative variable among different sub-groups.

- 1. Statistics \rightarrow Summaries \rightarrow Numerical summaries...
- 2. Select the variable of interest from the list, e.g., price
- 3. Click "Summarize by groups..."
- 4. In the pop-up window "Groups", select the categorical variable defining the sub-groups (say the roof type indicating the whether the home has a tile roof or non-tile roof) and click OK.
- 5. Click OK in the pop-up window Numerical Summaries.

orge arrea aath pool pool pool control of the contr	Variables (pick one or more)	R Groups
tones 👘 🥠 OK 🛛 💥 Cancel	age area bath price size	Groups variable (pick one) pool
Summarite by prount	Summarize by organize	OK K Cancel

Output:

	mean	sd	IQR	0%	25%	50%	75%	100%	data:n
Non-tile	139225.7	20080.80	27500	105000	123500	137000	151000	185500	63
Tile	227856.0	29833.54	35000	150000	210000	237000	245000	262500	25

Interpretation of the computer output:

- 1. Out of those 88 sale homes, 63 homes have a non-tile roof and 25 have a tile roof.
- 2. The average price of homes with a tile roof is \$227856.0 and the average price of homes with a non-tile roof is \$139225.7, which means on average homes with a tile roof are more expensive than homes with a non-tile roof.
- 3. The price of homes with a tile roof has a larger variation than the price of homes with a non-tile roof, because it has a larger sample standard deviation (\$29833.54 versus \$20080.80) and a larger IQR (\$35000 versus \$27500).
- 4. The price of homes with a tile roof also has a larger minimum, quartiles, and maximum, respectively.

2.2.2 Obtain Graphs

Almost all graphs can be found under **Graphs** in the menu bar. In general, the bar chart and pie chart are for qualitative (categorical) variables, while the histogram, boxplot, dot plot, and stem-and-leaf display are for quantitative variables. The scatter plot is for two quantitative variables. The quantile-comparison (QQ) plot is used to check whether the data follow a certain distribution. We can use it to check whether the data follow a normal distribution; this is called the normal probability plot in the textbook.

Histogram for a single quantitative variable:

1. Graphs \rightarrow Histogram...

- 2. Select the variable of interest from the list, e.g., price
- 3. Click **Options** to specify the Axis scaling; use Frequency counts for frequency and Percentages for relative frequency. Specify the labels and the title of the histogram if you want.
- 4. Click OK

Variable (pick one)	Plot Options	Plot Labels	
age	Number of bins: <auto></auto>	x-axis label	Price (in \$)
bath	Axis Scaling		(C))
orice	C Frequency counts	y-axis label	Relative Frequency
ize	Percentages		(H) (D)
tories -	© Densities	Graph title	Histogram of Price of Sale Ho
Plot by groups			< [])

Side-by-side histogram to compare a single quantitative variable among different sub-groups

Graphs → Histogram...

- 1. Select the variable of interest from the list, e.g., price
- 2. Click Plot by groups..., select the categorical variable defining the sub-groups (say roof), click OK
- 3. Click **Options** to specify the Axis scaling, making sure to use **Percentage** for a side-by-side plot
- 4. Click OK

ata Options	Groups	Data Options		
(anable (pick one)	Groups variable (pick one)	Plot Options	Piot Labels	
ige internet	1000	Number of bins: <auto></auto>	x-axis label	<auto></auto>
ath	and the second s	Axis Scaling		+C
ine.		Frequency counts	y-axis label	<auto></auto>
ze		Percentages		(<u></u>))
ones +		O Densities	Graph title	<auto></auto>
tot by groups				- 40 J.F.

We can also draw the side-by-side boxplots to compare the price of homes with a tile and non-tile roof (see the boxplots output below)

- 1. Graphs → Boxplot...
- 2. Select the variable of interest from the list, e.g., price
- 3. Click Plot by groups..., select the categorical variable defining the sub-groups (say roof), click OK
- 4. Click OK

Bar Chart for a single qualitative (categorical) variable)

- 1. Graphs → Bar graph...
- 2. Select the variable of interest from the list, e.g., pool (whether the home has a swimming pool)
- 3. Click **Options** to specify style of the bars. Click OK
- 4. Click OK

Data Options	Data Options
Variable (pick one)	Style of Group Bars Plot Labels
	Divided (stacked) x-axis tabel <auto></auto>
root a	♥ Side-by-side (parallel)
	Position of Legend y-axis label <auto></auto>
Plot by groups.	@ Right ·
	Center Graph title <auto></auto>
	O tett

Pie Chart for a single qualitative (categorical) variable

Contingency (two-way) table for two categorical variables

- 1. Statistics→Contingency table→Two-way table...
- 2. Specify the row variable and column variable (say pool and roof, respectively)
- 3. Click **Statistics→No percentage** (only gives the counts in each cell)
- 4. Click OK

Old CHERNICS	Data Statistics
ow variable (pick one) Column variable (pick one)	Compute Percentages
lood	© Row percentages
	Column percentages
ubset expression	C Percentages of total
all valid cases>	
	Hypothesis Tests
	Chi-square test of independence
	Components of chi-square statistic
	Print expected frequencies

Output:			1. The row variable is pool, and the column variable is roof
Frequenc	y table:		2. 11 out of 88 homes do not have a swimming pool and
pool No	n-tile Til	e	have a non-tile roof; 7 have no pool but a tile roof; 52
No	11	7	have a pool and non-tile roof; and 18 homes have a pool
Yes	52	18	and a tile roof.

Side-by-side bar charts (conditional on sample size of sub-groups) for two categorical variables

Based on the contingency table, we can draw a side-by-side bar chart to check whether those homes with a swimming pool and without a swimming pool share the same pattern regarding to the roof type.

- 1. Graphs → Bar graph...
- 2. Select the variable for X-axis, e.g., pool
- 3. Click **Plot by groups**, select the variable whose pattern is of interest (say roof type here). Click ok.
- 4. Click Options to specify style of the group bars. Under Axis Scaling, choose Percentages. Under Style of Group Bars, choose Side-by-side (parallel). Under Percentages for the Group Bars, choose Conditional. This will account for the sample size in each sub-group, and the provided percentage in each cluster of bars will be the percentage from each subgroup. Click OK.
- 5. Click OK

Below, you can see:

1) the bar for no pool and non-tile roof is at a height of 11/18 = 61.1% and the bar for no pool and no-tile is at 7/18 = 38.9%. Percentages add to 100% for the no pool group.

2) the bar for yes pool and non-tile roof is at a height of 52/70 = 74.3% and the bar for yes pool and tile roof is at 18/70 = 25.7%. Percentages add to 100% for the yes pool group.

Side-by-side bar charts (using overall sample sizes) for two categorical variables

If at step 4 above, you had chosen **Total** under **"Percentages for Group Bars"**, the bars did not consider the sample size of each subgroup, you would divide the total of each bar by the overall total number of observations in the dataset. This is not useful or desirable when samples sizes are different, but the example is included here so you can see what happens.

Here you can see:

1) the bar for no pool and non-tile roof is at a height of 11/88 = 12.5% and the bar for no pool and no-tile is at 7/88 = 8.0%.

2) the bar for yes pool and non-tile roof is at a height of 52/88 = 59.0% and the bar for yes pool and tile roof is at 18/88 =20.5 %.

3)The total of all the percentages over all the four bars is 100%.

Side-by-side pie charts (with subset data sets) for two categorical variables

There is no easy way to draw a side-by-side pie chart; we need to select the subset of cases of interest and then draw an individual pie chart for each subset. For this example, we begin with the active data set you called Home in R (that was from the Excel file 8variable_salehome.xlsx that we have been using throughout section 2.2 of the manual) and then select homes with a swimming pool and save the data in a new data subset called PoolYes, and then we select homes without a swimming pool from the active data Home and save that data in a new data subset called PoolNo. And then we draw one pie chart on roof type for each subset dataset PoolYes and PoolNo.

- 1. Data→Active data set→Subset active data set...
- 2. Select the variable to split the data (say pool here)
- In Subset expression, type the selection condition. For example, pool=="Yes" Note: if the value is not numerical, you need to surround the value with double quotes. Also, the variable name "pool" is case sensitive, the outcome "Yes" is case sensitive, and you must use two equal signs.
- 4. In **Name of new data set**, type the name of the new data set. For example, PoolYes contains all homes with a swimming pool.

Note: Now the active data set is PoolYes. Make sure you switch the active data set back to Home before selecting homes without a swimming pool.

- 5. Click **Data set**, select the whole data set (Home) and click OK
- Repeat for homes without a swimming pool. Use the Subset expression pool=="No" and use the name PoolNo as your Name of New data set.
 Note: if the value is not numerical, you need to surround the value with double quotes. Also, the variable name "pool" is case sensitive, the outcome "No" is case sensitive, and you must use two equal signs. Also, there is a space after No!
- 7. Click **Data set**, select PoolYes as the active data set and click OK
- 8. Graphs → Pie Chart..., select roof and click OK
- 9. Click Data set, select PoolNo as the active data set and click OK
- 10. Graphs → Pie Chart..., select roof and click OK

With Swimming Pool	Without Swimming Pool	Comments:
roof	Non 19	 The patterns regarding to roof type are different for homes with and without a swimming pool, since the two pie charts are not similar. Percentage of homes with a tile roof is higher for homes without a swimming pool.

For your reference, the following table summarizes selection operators in R.

Symbol/code	Name	Use
==	equality	used to indicate the variable should equal
!=	Inequality	used to indicate the variable should not equal
&	And	used to combine multiple expressions
	Or	used to combine multiple expressions
is.na(varname)		Include the missing values of a variable
!is.na(varname)		Exclude the missing values of a variable
>	Greater than	
<	Less than	
>=		More than or equal to
<=		Less than or equal to

Scatterplot and Pearson correlation coefficient for two numerical quantitative variables.

Here we will investigate the relationship between two quantitative variables.

We again use the Home data.

Draw a scatter plot of price (Y-axis) versus size (X-axis). Could we model their relationship using a straight line? How does price change when size increases?

- 1. Click Data set, select Home as the active data set and click OK
- 2. Graphs → Scatterplot...
- 3. Choose size as the y-variable and price as the x variable.
- 4. Click **Options**, select **Least-squares line** under **Plot Options**. Click OK.

Comments: It might be okay to model the relationship between price and size using a straight line. When size increases the price increases. This means price and size have a positive association.

Like the five-number summary is the numerical summary of a boxplot, the numerical summary for a scatter plot is the Pearson correlation coefficient r; it captures the association between the response variable y (e.g., price) and the predictor variable x (e.g., size) in three aspects:

- Pattern: it captures only the linear association. Do not use the correlation coefficient *r* to describe non-linear association.
- Strength: the closer r is to either +1 or -1, the stronger the linear association. $r \approx 0$ indicates no or weak linear association.
- Direction: positive or negative. Positive association (r > 0) means that y and x change in the same direction. That is, y increases (decreases) if x increases (decreases). Negative association (r < 0) means that y and x change in the opposite direction. That is, y increases (decreases) if x decreases (increases).

The following figure gives four scatter plots and their corresponding correlation coefficients.

Calculate the Pearson correlation coefficient between price and size.

- 1. Statistics→Summaries→Correlation Matrix
- 2. Select price and size together, click OK

We can also calculate the correlation coefficient for each pair of the quantitative variables. To do this, select all the variables when you run the correlation matrix commands above.

age area bath price size	age 1.00000000 0.11507397 -0.74943817 -0.92896864 -0.75364538 0.04393443	area 0.11507397 1.00000000 0.01111070 0.03110192 0.20103532 0.19604329	bath -0.7494382 0.0111107 1.0000000 0.7987195 0.8234954 0.2556983	price -0.92896864 0.03110192 0.79871946 1.00000000 0.85716868 0.03983124	size -0.7536454 0.2010353 0.8234954 0.8571687 1.0000000 0.2779783	stories 0.04393443 0.19604329 0.26569831 0.03983124 0.27797829	Price and age have a strong, negative, linear association. Size and bath have a moderately strong,
size stories	0.04393443	0.19604329	0.2656983	0.03983124	0.2779783	1.00000000	moderately strong, positive association.

In statistics, it is important to check whether the data are taken from a normal population. The graphical tool used is called the normal probability plot. The normal probability plot is also called the normal Q-Q (Quantile-Quantile) plot since it is a scatter plot with the observed and theoretical quantiles as the axis. It does not matter whether we put the observed quantile on the x-axis or on the y-axis. If the data are taken from a normal population, the points roughly fall on a straight line. By default, R commander plots the theoretical quantile on the x-axis and the observed quantile on the y-axis.

Using the home data set, check whether the price of sale homes follows a normal distribution.

- 1. Click **Data set**, select Home as the active data set and click OK
- 2. Graphs → Quantile-comparison plot...
- 3. Select price and click OK

LAB 3 PROBABILITY DISTRIBUTIONS (BINOMIAL AND NORMAL)

This chapter introduces how to use R commander to calculate probabilities related to Binomial distributions (a discrete distribution) and normal distributions (a continuous distribution).

3.1 BINOMIAL DISTRIBUTION

A Bernoulli trial is a chance experiment with only two possible outcomes: success or failure. Let p be the probability of success. Repeat the Bernoulli trial n times and let X=number of successes out of these n outcomes. X follows a Binomial distribution with parameters n (# of trials) and p (probability of success).

3.1.1 Steps to Apply the Binomial Formula

- Identify *n* (# of trials) and *p* (probability of success);
- Write down the event using the variable *X*;
- Re-write the event in the form of P(X = a) or $P(X \le a)$ or P(X > a) if necessary.

3.1.2 Example: Application of Binomial Distribution

A quiz consists of 10 multiple choices questions with four choices A, B, C and D. I did not study and randomly picked one answer for each question.

- (a) Find the probability that I got six correct answers.
- (b) Find the probability that I got at least one correct answer.
- (c) Find the probability that I got at least nine correct answers.
- (d) Find the probability that I got eight to ten correct answers.

Solutions: For each question, I either got the correct answer or not. Each question is one Bernoulli trial. Since I randomly picked one answer, each of the four choices has the same chance to be chosen. There is only one correct answer and the probability of obtaining the correct answer is $\frac{1}{4}$. Whether I obtain the correct answer for the current question will not affect the chance of getting the correct answer for the next question, so the trials are independent with the same probability of success. Let X = # of correct answers. X follows a binomial distribution. Its probability distribution is

 $P(X = x) = {}_{n}C_{x}p^{x}(1-p)^{n-x} = {}_{10}C_{x}(\frac{1}{4})^{x}(1-\frac{1}{4})^{10-x} = {}_{10}C_{x}(0.25)^{x}(1-0.25)^{10-x}, x=0, 1, ..., 10.$ Re-write the events in the form of P(X = a) (binomial probabilities) or $P(X \le a)$ (binomial **lower tail** probabilities) or $P(X \ge a)$ (binomial **upper tail** probabilities).

- (a) Find the probability that I got six correct answers. P(X = 6)
 - 1. Distributions→Discrete distributions→Binomial distribution→Binomial probabilities
 - 2. In "Binomial Probability" window, put n in Binomial trials and p in Probability of success

Note: Your computer output may use notation with e- in it, depending on your version of R. In computer outputs of R, $1.622200e - 02 = 1.622200 \times 10^{-2} = 0.016222$, $1.622e + 02 = 1.622 \times 10^{2} = 162.2$, $2.861023e - 05 = 2.861023 \times 10^{-5} = 0.00002861023$.

(b) Find the probability that I got at least one correct answer. $P(X \ge 1)$ Note that $P(X \ge 1) = P(X > 0) = P(X = 1) + P(X = 2) + \dots + P(X = 10) = 1 - P(X = 0)$

Therefore, there are two ways to calculate the answer:

Based on the output of probability distribution, we find

 $\mathbf{1} - \mathbf{P}(\mathbf{X} = \mathbf{0}) = 1 - 0.05631351 = 0.9436865$

- We can use the upper tail probability P(X > x). In this question, we want P(X > 0).
 - 1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities...
 - 2. In "Binomial Probability" window, put x in Variable value(s), n in Binomial trials, and p in Probability of success. In this example, x = 0, n = 10, p = 0.25
 - 3. Select Upper tail, since we want the upper tail probability (greater than)
 - 4. Click OK

	Output.
Variable value(s) 0	[1] 0.9436865
Binomial trials 10	
Probability of success 0.25	
O Lower tail	The result is the same as the one
Upper tail	obtained using the first method.

(c) Find the probability that I got at least nine correct answers. $P(X \ge 9)$ Note that $P(X \ge 9) = P(X > 8) = P(X = 9) + P(X = 10)$

Therefore, there are two ways to calculate:

- Based on the output of probability distribution, P(X = 9) + P(X = 10) = 0.00002861023 + 0.000009536743 = 0.0000295639
- Use the upper tail probability P(X > x). In this question, we want P(X > 8).
 - 1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities...

- 2. In "Binomial Probability" window, put x in Variable value(s), n in Binomial trials, and p in Probability of success. In this question, x = 8, n = 10, p = 0.25
- 3. Select **Upper tail**, since we want the upper tail probability (greater than)
- 4. Click OK

(d) Find the probability that I got eight to ten correct answers, inclusively. $P(8 \le X \le 10)$ Note that

$$P(8 \le X \le 10) = P(X = 8) + P(X = 9) + P(X = 10) = P(X \le 10) - P(X \le 7) = 1 - P(X \le 7)$$

Therefore, there are two ways to calculate:

• Based on the output of probability distribution,

P(X = 8) + P(X = 9) + P(X = 10) = 0.0003862381 + 0.00002861023 + 0.000009536743= 0.000415802

- Use the lower tail probability $P(X \le x)$. In this question, we want $P(X \le 7)$.
 - 1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities...
 - 2. In "Binomial Probability" window, put x in Variable value(s), n in Binomial trials, and p in Probability of success. In this question, x = 7, n = 10, p = 0.25
 - 3. Select Lower tail, since we want the lower tail probability (less than or equal to)
 - 4. Click OK

R Binomial Probabilities	Output:
Variable value(s) 7	[1] 0.9995842
Binomial trials 10	
Probability of success 0.25	D(9 < Y < 10) = 1 $D(Y < 7)$
Cover tail	$P(0 \le X \le 10) = 1 - P(X \le 7)$
O Upper tail	= 1 - 0.9995842 = 0.0004158
🔞 Help 🔰 Reset 📈 OK 🗱 Cancel 🎺 Apply	

3.2 NORMAL DISTRIBUTION

We use the density curve to describe the distribution of a continuous variable. The total area under a density curve is one, and the area under the curve is related to the probability of a certain event. The most widely used continuous distribution is the normal distribution, which is well known as the bell-shaped and symmetric curve. The normal density function has two parameters: the mean μ and the standard deviation σ . The parameter μ controls the center (location) of the distribution and σ controls the shape of the distribution. When σ is larger, the curve appears to be shorter and fatter; when σ is smaller, the curve appears to be taller and slimmer. If a random variable X follows a normal distribution with mean μ and standard deviation σ , we write $X \sim N(\mu, \sigma)$. Its probability density function f(x) is given by:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$
, with $\pi \approx 3.142, \ e \approx 2.718.$

Recall that for a binomial distribution, $P(X \le x) = P(X = 0) + P(X = 1) + \dots + P(X = x)$. For a normal distribution which is continuous, P(X = x) = 0 and therefore, $P(X \le x) = P(X < x)$. There are two main applications of normal distributions: to find the probabilities given the x values (tail probabilities) and to find the x values given the probabilities (quantiles).

3.2.1 Find the Probabilities Related to Normal Distributions

Suppose grade X follows a normal distribution with a mean 70 and a standard deviation 10. That is $X \sim N(70, 10)$. We are interested in the probabilities of the following events.

- 1. Find the probability that a student has a grade below 60. P(X < 60)
- 2. Find the probability that a student has a grade above 85. P(X > 85)
- 3. Find the probability that a student has a grade between 60 and 85. P(60 < X < 85)

The following graphs show their corresponding probabilities:

(a) Find the probability that a student has a grade below 60.

We want P(X < 60), which is a lower tail probability.

1. Distributions→Continuous distributions→Normal distribution→Normal probabilities

2. In "Normal Probability" window, put x in Variable value(s), μ in Mean, and σ in Standard deviation.

In this question, $x = 60, \mu = 70, \sigma = 10$

- 3. Select Lower tail, since we want the lower tail probability (less than)
- 4. Click OK

R Commander File Edit: Data Statistics Graphs Models Out Duttors Tools Help R Data set No active datasets Edit data set New data set Model: * -No active R Scrutt R Manadows	Output: [1] <mark>0.1586553</mark>
Normal Probabilities Vanable value(s) Mean 70 Standard deviation Upper tail Upper tail Di Help Reset OC X Cancei Apply	If $X \sim N(70, 10)$, $P(X < 60)=0.1587$. If we randomly pick one student, the probability that the student obtains a grade below 60 is 0.1587. Or 15.87% of the students obtain a grade below 60.

(b) Find the probability that a student has a grade above 85.

We want P(X > 85) which is an **upper tail** probability.

- 1. Distributions→Continuous distributions→Normal distribution→Normal probabilities
- 2. In "Normal Probability" window, put x in Variable value(s), μ in Mean, and σ in Standard deviation.

In this question, $x = 85, \mu = 70, \sigma = 10$

3. Select Upper tail, since we want the upper tail probability (greater than)

4. Click OK

(c) Find the probability that a student has a grade between 60 and 85.

We want P(60 < X < 85), the area between 60 and 80, which is equal to the area to the left of 85 minus the area to the left of 60.

ur R Commander	Output:
File Edit Data Statistics Graphi Models Distributions Tools Help R Normal Probabilities	[1] 0.9331928
Variable value(s) 85 Mean 70 Standard deviation 10 Lower tail Upper tail	If $X \sim N(70, 10)$, $P(X < 85) = 0.9332$. P(60 < X < 85) = P(X < 85) - P(X < 60) = 0.9331928 - 0.1586553 = 0.7745375
🔞 Help 🥱 Reset 🧹 OK 🗱 Cancel 🌈 Apply	77.45% of the students obtain a between 60 and 85.

3.2.2 Find the Quantiles of Normal Distribution

That is given the percentage or probability q, find the x value such that q = P(X < x). The x value is called the quantile of the distribution corresponding to q.

Suppose grade X follows a normal distribution with a mean 70 and a standard deviation 10. That is $X \sim N(70, 10)$.

(a) If the bottom 5% of students will fail, find the passing grade. We want to find the x value such that P(X < x) = 0.05, i.e., 5% of grades below what value.

1. Distributions→Continuous distributions→Normal distribution→Normal quantiles

2. In "Normal Quantiles" window, put q in Probabilities, μ in Mean, and σ in Standard deviation. In this question, q = 0.05, $\mu = 70$, $\sigma = 10$

3. Select **Lower tail**, since we want the *x* value corresponding to a lower tail probability (less than) 4. Click OK

(b) If the top 2% of students will get an A, find the cutoff of getting an A.

We want to find the x value such that P(X > x) = 0.02, i.e., 2% of grades above what value or 98% of grades below what value.

Approach 1: upper tail probability, find the x value such that P(X > x) = 0.02.

1. Distributions→Continuous distributions→Normal distribution→Normal quantiles

2. In "Normal Quantiles" window, put q in Probabilities, μ in Mean, and σ in Standard deviation. In this question, q = 0.02, $\mu = 70$, $\sigma = 10$

Select Upper tail, since we want the x value corresponding to an upper tail probability (greater than)
 Click OK

Approach 2: lower tail probability, find the x value such that P(X < x) = 0.98. Note that 2% of grades **above** what value=98% of grade **below** what value. That is P(X > x) = 0.02 is that same as $1 - P(X > x) = 1 - 0.02 \implies P(X < x) = 0.98$

1. Distributions→Continuous distributions→Normal distribution→Normal quantiles

2. In "Normal Quantiles" window, put q in Probabilities, μ in Mean, and σ in Standard deviation. In this question, q = 0.98, $\mu = 70$, $\sigma = 10$

3. Select **Lower tail**, since we want the *x* value corresponding to a lower tail probability (less than) 4. Click OK

3.3 GENERATE SIMPLE RANDOM SAMPLES FROM A CERTAIN DISTRIBUTION

3.3.1 Setting a Seed

Although you can let the software choose a random seed prior to generating simple random samples, examples that require the generation of simple random samples in the manual will require you to set a given seed that is provided for you. This allows the output in the manual examples to match what you get as you work through them. Setting a seed retires meticulous input to R.

You must set your desired seed every time you do a new problem!

Instructions are below for setting a seed of 1234.

Approach 1 (fastest, but you must be meticulously accurate, and it is easy to mess up):

Type the command **set.seed(1234) in the R Script box** (not in the Output box!!!), then click "**Submit**" (do not hit "Enter", it will not work). The command line will be executed and appear in the Output box.

Make sure there are no characters in front of your set.seed(1234) command and that the command is typed flush against the left side of the R Script box in a new line all by itself. See below.

R Commander		\times
File Edit Data Statistics Graphs Models Distributions Tools Help		
Que to the set Data set Data set Data set Data set Data set Model: ∑ <no active="" model=""></no>		
R Script R Markdown		
set.seed(1234)		^
		~
<		>
Output > set.seed(1234)	Submit	_

Approach 2: tedious and kind of mission impossible.

Drop down **Distributions**→**Set random number generator seed**. A box appears with a suggested seed. Your box may have a different suggested seed.

Set Random Nu	mber Generator Se	sed ×
	62677	
(C) Help	af DK	💥 Cancel

Move the two boxes together to get as close to 1234 as you can. The closest I can get is 1191. The closest number you can get may be different.

Click carefully, as many times as necessary, in the grey bar directly beside the boxes to move the seed number you have there to 1234. This is very tedious. Again, you must set the seed to the given seed each time you do a problem.

R Set Random Nu	mber Generator Se	eed >
1234		
(P) Help	W DK	Second Cancel

Once succeed, click OK.

3.3.2 Generate Simple Random Sample from a Normal Distribution

Suppose we want to generate n=5 observations from a normal distribution with mean μ =70 and standard deviation σ =10. We set a seed of 1234. We call the one dataset Normaln5 since the sample size is 5 and we are doing only 1 set (of samples of size 5).

1. Type **set.seed(1234) in the R Script box** (on its own line and flush against the left side of the box). Click Submit.

2. Distributions \rightarrow Continuous distributions \rightarrow Normal distribution \rightarrow Sample from normal distribution... 3. In the "Sample from Normal Distribution" window, perform the following. Enter name of data set (say Normaln5), put μ in Mean, and σ in Standard deviation, number of samples in Number of samples (rows), and the sample size n in Number of observations (columns). In this question, $\mu = 70, \sigma = 10$, we only want one simple random sample, with sample size n = 5.

4. Select **Sample means** under **Add to Data Set.** It will store the sample mean of the sample in the last column. Click OK.

5. Select Normaln5 under Data set to make it as active data set

6. Click View data set to view the sampled data

We can also generate K sets of simple random samples of size n by setting the value of **Number of observations (columns)** to be K. For example, if we want to generate three simple random samples of size 5, we would follow the steps 1 to 6 above (including setting the seed to 1234) and put 3 in **Number of samples (rows)** and 5 in **Number of observations (columns)**. I named it Normaln5k3.

File Edit Data Statistics Graphs Models Distributions Tools Help	File Edit Data Statistics Graphs Models Distributions Tools Help
R Sample from Normal Distribution	R Sample from Normal Distribution
Enter name for data set: NormainS	Enter name for data set: Normaln5k3
Mean 70	Mean 70
Standard deviation 10	Standard deviation 10
Number of samples (rows) 1	Number of samples (rows) 3
Number of observations (columns) 5	Number of observations (columns) 5
Add to Data Set	Add to Data Set
2 Sample means	🕑 Sample means
E Sample sums	E Sample suma
III Sample standard deviations	Sample standard deviations
🕲 Help 🥱 Reset 🗹 OK 🗱 Cancel 🕫 Apply	🔞 Help 👌 Reset 📝 DK 🗱 Cancel 🥐 Apply
utput	Output

Normain5				_		×	R No	main5k3	1				-	C)	×
A Hormony								1	obal.				obeS		con
obsl	obs2	obs3	obs4	obs5		mean	11174	\$7.9	2936	46.54302	64.25260	61.09962	62.23746	58.41	241
sample 57.92934	72.77429	80.84441	46.54302	74.29125	66.4	47646	mang 1	72.7	7429	74.29125	64.53368	65.22807	70.66459	69.49	438
							1000003	80.8	4441	75.06056	68.35588	60.01614	79.59494	71.97	431

3.3.3 Generate Simple Random Sample from an Exponential Distribution

An exponential distribution is an extremely right skewed continuous distribution which is widely used to model the lifetime of products. The density function of exponential distribution is given by:

$$f(x) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}$$
, $x > 0$, with $e \approx 2.718$

denoted as $X \sim Exp(\lambda)$ where λ is the mean (expected value) of X. One property of an exponential distribution is the mean and standard deviation both equal λ , i.e., $\mu = \sigma = \lambda$.

Suppose the survival time of liver cancer patients, *X*, follows an exponential distribution with mean and standard deviation 5 years, i.e., $\mu = \lambda = 5$, $\sigma = \lambda = 5$.

(a) Generate 10000 observations from an exponential population distribution with mean $\lambda = 5$ or rate $\frac{1}{\lambda} = \frac{1}{5} = 0.2$. Use the seed 1235 and save the data in the file "Exponentialn1000".

(b) Draw a histogram using those 10000 observations. With 10000 observations, this sample histogram provides an excellent approximation of an exponential population distribution with mean 5.

(c) Calculate the sample mean and sample standard deviation and compare them with the population mean and standard deviation.

1. Type set.seed(1235) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Continuous distributions→Exponential distribution→Sample from exponential distribution...

3. In the "Sample from Exponential Distribution" window, type "Exponentialn10000" in Enter name of data set, put 0.2 in Rate, 10000 in Number of samples (rows), and 1 in Number of observations (columns).

4. Click OK

5. Select Exponentialn10000 under Data set to make it as active data set

6. Click **View data set** to view the sampled data. The samples are stored in the column "obs", the data set has one column and 10000 rows.

7. Graphs→Histogram

8. Select "obs" and click OK.

Internation Internation </th <th>a Statistics Graphs Models Distributions Tools Help</th>	a Statistics Graphs Models Distributions Tools Help
Rate 0.2 Number of samples trows1 10000 Number of samples trows1 10000 Number of observations (columns) 1 Plot by groups. Plot by groups.	
Enter name for data set. Exponentials10000 Rate Data Options Variable (pick one) Ust Variable (pick o	
Bate D.2 Variable (pick one) Number of samples (rows) 10000 Number of observations (columns) 1 Add to Data Set Piot by groups. Sample sams Sample standard deviations	ms
Number of samples (rows) 10000 Number of observations (columne) 1 Add to Data Set Plot by groups. Sample means Sample sums Sample sums Sample standard deviations	ick one)
Number of observations (columns) 1 Add to Deta Set Plot by groups Sample means Sample standard deviations	
Add to Data Set: Sample means Sample standard deviations	
Sample means Sample sums Sample standard deviations	ups.,
Sample sums Sample standard deviations	
E Sample standard deviations	
	🔷 Reset 🥰 OK 🗱 Cancel 🏴 Apply

8. Statistics→Summaries→Numerical Summaries

9. In the Numerical Summaries window, select "obs" and click Statistics

10. Check "Mean", "Standard Deviation", "Interquartile Range" and "Quantiles".

Edit Data filatione Graphs Models Distributions Tools Help	File Edit Data Statistics Graphs Models Deminutions Tools Help
Numerical Summaries	R Numerical Summaries
lata Statistics	Data Statistics
/ariables (pick one or more)	2 Mean
di di	2 Standard Deviation
	E Standard Error of Mean
Summarize by groups	V Interquartile Range
	Coefficient of Variation
	🖾 Skewness 🗇 Type 1
	🖾 Kurtosit 🗶 Type 2
	O Type 3
	2 Constitut 0 75 5 75 1

Outputs

 mean
 sd
 IQR
 0%
 25%
 50%
 75%
 100%
 n

 4.92683
 4.913667
 5.328878
 0.0007534213
 1.447858
 3.431467
 6.776736
 51.99725
 10000

- The histogram shows that the distribution of exponential with mean $\mu = \lambda = 5$ or rate $\frac{1}{\lambda} = \frac{1}{5} = 0.2$ is extremely right skewed.
- The sample mean based on n = 10000 observations is $\bar{x} = 4.927$ which is very close to the population mean $\mu = 5$ due to the large sample size.
- The sample standard deviation s = 4.914 which is also very close to the population standard deviation $\sigma = \lambda = 5$. Note that for an exponential distribution, the population mean and standard deviation are equal. That is $\mu = \sigma = \lambda$.

LAB 4 DISTRIBUTION OF THE SAMPLE MEAN & CENTRAL LIMIT THEOREM

In this lab, we are going to investigate the distribution of the sample mean \overline{X} by generating samples with different sample sizes from different population distributions. The central limit theorem states that when the sample size n is large enough (rule of thumb: $n \ge 30$), the sample mean \overline{X} is approximately normally distributed regardless of the population distribution. We can understand the central limit theorem by simulation.

4.1 OBTAIN THE DISTRIBUTION OF THE SAMPLE MEAN FROM A CERTAIN DISTRIBUTION

- 1. Take a simple random sample of size n from a certain distribution.
- 2. Calculate the sample mean \bar{x} .
- 3. Suppose the population size is N (i.e., there are N individuals in the population), so there are NC_n (N choose n) distinct samples. One sample will generate one value of the sample mean \bar{x} .
- 4. Drawing a histogram on those $NC_n \bar{x}$ -values gives the distribution of the sample mean \bar{X} for sample size n.
- 5. If NC_n is too large for us to consider all possible samples, we can generate a sufficiently large number of samples, say 10000, to approximate the distribution of the sample mean \overline{X} .

For the distribution of the sample mean \overline{X} with sample size n, we have the following conclusions:

• The mean of the sample mean \overline{X} equals the population mean μ ; that is

$$\mu_{\bar{X}}=\mu.$$

• The standard deviation of the sample mean \bar{X} equals the population standard deviation σ divided by the square root of the sample size; that is

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}.$$

These two conclusions are always true for any population distribution and for any sample size n. We discuss the **shape of the distribution of the sample mean** \overline{X} **in two cases**:

- 1. When the population distribution (the distribution of the variable under consideration X) is normal, the sample mean \overline{X} is **exactly** normally distributed regardless of the sample size n.
- 2. When the population distribution is not normal, but the sample size n is large, the sample mean \overline{X} is **approximately** normally distributed. This is guaranteed by the central limit theorem.

4.2 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS NORMAL

Suppose a population consists of N = 100 students and the variable of interest is the grade X. The histogram of the grades of these 100 students gives the population (or parent) distribution, the distribution of X. The mean and standard deviation of these 100 grades give the population mean and population standard deviation, respectively, as $\mu = 70$ and $\sigma = 10$. The normal QQ plot shows that the grade X follows a normal distribution, since all the data points roughly lie on a straight line.

Let us examine the distribution of sample mean \overline{X} with sample size n = 2, 5, 30 respectively.

For each sample size n (# of observations (columns)), generate 10000 samples (# of rows). Use the seed 5942 for each n. Calculate the sample mean \bar{x} for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(5942) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Continuous distributions→Normal distribution→Sample from normal distribution...

3. In the **"Sample from Normal Distribution**" window, type Normaln2 in **Enter name of data set**, put 70 in **Mean**, and 10 in **Standard deviation**, 10000 in **Number of samples (rows)**, and 2 in **Number of observations (columns)**

4. Select **Sample means** under **Add to Data Set**, and the dataset will store the sample mean of the sample in the last column (labeled "mean").

5. Click OK

6. Select Normaln2 under Data set to make it as active data set

7. Click View data set to view the sampled data

Il Commander	I Normain?			п	×
Eatr Data Statistics Graphs Models Charmanens Tools Help	- roomana	2000	194	-	2
	122	2031	COLA		-date of
Sample from Normal Distribution		73.66081	75.78434	74.72	257
	sempled	81,53335	56.05528	73.01	431
inter name for data set. Normain2	samplel	77,90405	50,91303	60.44	094
	many: Ee-4	76.19945	70.64339	73.42	143
and the second se	eternit Lact	69.35083	61.00231	65.19	157
Mean.	pamplat	77.22568	\$4.36964	80.79	766
Standard deviation 10:	sample"	71.01812	69.76566	70.35	189
Number of samples (result 10000	samplel	65.95870	63.83499	64.85	694
	manule5	67,47400	66.97466	67.22	437
Number of observations (columns) 2	samtle10	01.60163	59.45437	70.56	800
	Annalell	78,92024	62.05169	71.35	597
d to Data Set	stattika 12	83,55028	66.52618	75.03	829
	pamile13	86,12527	60.11961	73.12	244
Semple means	semplel4	68,93562	64.26898	66.60	230
Sample sums	sample15	49,41223	80,80498	65.18	860
Sample standard deviations	samplelG	60,13656	66.24347	63.15	00.1
	service 17	75,04695	82,14745	79.09	720
	and an	ES DESSE	NG RANNE	AN	918
	and the second se	88 85500	50 20265	21.24	404
C Heip Reset CK K Cancel P Apply	2000 Jul 20	66 60170	77 44047	13.07	040
	Jumpiczy,	00.03112	11.23361	(4,97	A62

8. Graphs→Histogram

9. Select "mean" and click OK.

10. Statistics→Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics

12. Check "Mean", "Standard Deviation"

13. Repeat steps 1-12 for sample size n = 5 and n = 30 in "Sample from Normal Distribution"

window). For each repetition of the steps, type set.seed(5942) in the R Script box and click submit. Use the file names Normaln5 and Normaln30. **Never write over a file.**

Findings:

- The mean of the sample mean is always very close to the population mean µ = 70 regardless of the sample size n. The difference is because we did not consider all possible samples of size n, but only 10000 samples.
- The standard deviation of the sample mean is always close to theoretical value $\frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{n}}$. When $n = 2, \frac{10}{\sqrt{n}} = \frac{10}{\sqrt{2}} = 7.071$; when $n = 5, \frac{10}{\sqrt{n}} = \frac{10}{\sqrt{5}} = 4.472$; when $n = 30, \frac{10}{\sqrt{n}} = \frac{10}{\sqrt{30}} = 1.826$.
- The histogram of the sample mean has a bell-shaped curve regardless of the sample size n = 2, 5, or 30.

4.3 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS UNIFORM

Population Distribution Suppose *X*, the smiling time of eight-week-old babies, follows a uniform distribution between 0 and 10 seconds. The density curve is shown in the right panel. The density curve forms a rectangle population mean=5 and hence not a normal curve for sure. The population mean $\mu = 5$ second and the population SD=2.89 Density population standard deviation $\sigma = 2.89$ second. 0.10 0.09 Let's examine the distribution of sample mean \overline{X} 0.08 with sample size n = 2, 5, 30 respectively. That is the distribution of the average smiling time of *n* 0.07 randomly selected babies. 0,06 ż 8 10 Smiling Time

For each sample size n (# of columns), generate 10000 samples (# of rows). Use the seed 3921 for each n. Calculate the sample mean \bar{x} for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(3921) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Continuous distributions→Uniform distribution→Sample from uniform distribution...

3. In the **"Sample from Uniform Distribution**" window, type Uniformn2 in **Enter name of data set**, put 0 in **Minimum** and 10 in **Maximum**, 10000 in **Number of samples (rows)**, and 2 in **Number of observations (columns)**

4. Select **Sample means** under **Add to Data Set**, it will store the sample mean of the sample in the last column.

5. Click OK

6. Select Uniformn2 under Data set to make it as active data set

7. Click View data set to view the sampled data

R Commander	R Uniformn2	· · ·		-	
Trie Edit Data Statistics Graphs Models Distributions Tools Help		obsl	obs2		mean
R Sample from Uniform Distribution	samplel	6.7354049487	5.3240711521	6.029	73805
	sample2	9.6853983263	1,5531059098	5.619	25212
Enter name for data set: Uniformn2	sample3	1.7436493980	7.1644694358	4.454	05942
	sample4	8.9231268526	3.2272119913	6.075	16942
Minister D	sample5	9.1348444740	0.8906341624	5.012	73932
With the second s	sample∈	0.2043075138	7.5195439043	3.861	92571
Maximum 10	sample?	6.4560003625	2.2733777785	4.364	68907
Number of samples (rows) 10000	sample8	7.7307294752	9.9056908698	8.818	21017
Number of observations (columns) 2	sample9	3.0756841437	4.2246214603	3.650	15280
	sampieid	9.9899147660	4.5651950268	7.277	55490
And the Data Call	mample11	7.4605334946	3.0241765385	5.242	35502
Part of Links See	sample12	6.1612396548	2.1060307114	4.133	63518
K-Sample means	sample13	7.4149868940	8.3595889062	7.887	28790
Sample sums	sample14	9.6327030868	5.9752149624	7.803	95902
Sample standard deviations	sample15	0.5334124714	6.0206379252	3.277	02520
	sample16	8.4880903945	6.5638569626	7.525	97368
	sample17	9.4865448354	0.9369271551	5.211	73600
🔞 Help 🔥 Reset 🧹 OK 🕺 Cancel 🕐 Apply	sample18	6.4738980471	9.4369135052	7.955	40578
	nample19	4.8940044711	8.0556031060	6.474	80379
	sample20	0.3181835823	9.5606462471	4.939	41491

8. Graphs→Histogram

9. Select "mean" and click OK.

10. Statistics→Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics

12. Check "Mean", "Standard Deviation"

13. Repeat steps 1-12 for sample size n = 5, and n = 30 (number of columns in "**Sample from Uniform Distribution**" window). Type set.seed(3921) each time before sampling data from the uniform distribution. Use the file names Uniformn5 and Uniformn30. Never write over a file.

Findings:

- The mean of the sample mean is always very close to the population mean $\mu = 5$ regardless of the sample size *n*. The difference is because we did not consider all possible samples of size *n*, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}} = \frac{2.89}{\sqrt{n}}$. When n = 2, $\frac{\sigma}{\sqrt{n}} = \frac{2.89}{\sqrt{2}} = 2.044$; when n = 5, $\frac{\sigma}{\sqrt{n}} = \frac{2.89}{\sqrt{5}} = 1.292$; when n = 30, $\frac{\sigma}{\sqrt{n}} = \frac{2.89}{\sqrt{30}} = 0.528$.

• The population is symmetric, and the distribution of the sample mean is triangular when n = 2. The distribution of the sample mean appears to be normal for n = 5 and n = 30.

4.4 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS EXPONENTIAL

Suppose the survival time of liver cancer patients, X, follows an exponential distribution with mean and standard deviation 5 years, which is an extremely right skewed distribution.

Let's examine the distribution of sample mean \overline{X} with sample size n = 2, 5, 30 respectively. That is the distribution of the average of survival time of n randomly selected patients.

For each sample size n (# of columns), generate 10000 samples (# of rows). Use the seed 4518 for each n. Calculate the sample mean \bar{x} for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(4518) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Continuous distributions→Exponential distribution→Sample from exponential distribution...

3. In the **"Sample from Exponential Distribution**" window, type the name of the data file you would like to store the sampled data in **Enter name of data set** (say Exponentialn2), put 0.2 in **Rate**, 10000 in **Number of samples (rows)**, and 2 in **Number of observations (columns)**

4. Select **Sample means** under **Add to Data Set**, it will store the sample mean of the sample in the last column.

5. Click OK

- 6. Select Exponentialn2 under Data set to make it as active data set
- 7. Click **View data set** to view the sampled data

A Commander III		obsi	Obsl	ncon
Edit Data Statistics Graphs Models Chambuhons, Tools Help	sample1	3, 440096573	2,5384587003	3,90967764
	sample3	2.687408167	7.5489775604	5,01819286
Sample from Exponential Distribution	somple3	5.009052584	5.4689643298	5,23850846
	an arrest and	2.868410822	1.1492606904	2.00883576
nter name for data set: Exponentialn2	aangile3	0.047030109	13.6403100471	6,04762040.
	sample6	12,403580257	5.6463917524	9.02498600
	Folgnoe	3.323937117	7.7493159096	5.53662651
Rate 0.2	margil art	10,959502638	5.6906145762	8.32505861
Number of samples must) 30000	sampile9	9,904305398	10,8107285288	10.35746896
	sampleid	6,669461793	0.3040166009	3.52463920
Number of observations (columns)	samplell	6.500792997	2.1065401053	1.30366655
	margile12	1.157832043	0.2648077440	0,71131989
and to Data Set	samplel1	14,055699295	12,0183113118	13.03700530
	sample14	3.320524437	7,2000765424	5.26430045
c pampie means	samplel5	8.264243323	5.0457537265	6.65495852
Sample sums	31011gmas	2.253180367	14,1879551477	8,22056776
Sample standard depations	sample1"	3,293800971	8,9695450659	6,13167302
a sempre standerd deviadoris	samplelU	12.009664051	4.4757239705	0.60269401
	samplelf	13.194357948	0.9511085157	7.07273323
the second se	inampi1.0210	0.479738589	1,1085971158	0.79416785

8. Graphs→Histogram

9. Select "mean" and click OK.

- 10. Statistics→Summaries
- 11. In the "Numerical Summaries" window, select "mean" and click Statistics
- 12. Check "Mean", "Standard Deviation"

13. Repeat steps 1-12 for sample sizes n = 5 and n = 30 (number of columns in "**Sample from Exponential Distribution**" window). Type set.seed(4518) and click submit each time before sampling data from the exponential distribution. Use the file names Exponentialn5 and Exponentialn30. Never write over a file.

R Commander	R Commander	R Numerical Summaries
File Edit Data Statistics Graphic Models Distributions Tools Help	File E(S) Date Statistics Gra	Data Statistics
R Histogram	Data Statistics Variables (pick one or more) trouts obs1 obs2 Summarize by groups	Mean Standard Deviation Standard Error of Mean Interguarble Range Coefficient of Variation Skewness © Type 1 Kurtosis @ Type 2 Type 3 Countries 0, 25, 5, 75, 1
Co Help Reset K Cancel R Apply	🕲 Help 💧 Reset	Quantiles: 0, 25, 5, 75, 1

Findings:

- The mean of the sample mean is always very close to the population mean $\mu = 5$ regardless of the sample size n. The difference is because we did not consider all possible samples of size n, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}} = \frac{5}{\sqrt{n}}$. When $n = 2, \frac{5}{\sqrt{n}} = \frac{5}{\sqrt{2}} = 3.536$; when $n = 5, \frac{5}{\sqrt{n}} = \frac{5}{\sqrt{5}} = 2.236$; when $n = 30, \frac{5}{\sqrt{n}} = \frac{5}{\sqrt{30}} = 0.913$.
- The population is extremely right skewed, and the distribution of the sample mean is still right skewed for the relatively small sample sizes of n = 2 and 5. But it is roughly normal when sample size n ≥ 30.

4.5 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS CHI-SQUARE

The Chi-square distributions form a family of right skewed distributions where a parameter called "degrees of freedom" determines where the peak of the distribution is and how skewed the distribution is. The mean of the Chi-square distribution is equal to its number of degrees of freedom. The variance of a Chi-square distribution is equal to two times the number of its degrees of freedom. This distribution is used in Goodness of Fit Tests and in Tests of Independence (both of which we will work with later in the course) and is a distribution that can characterize magnetic resonance imaging data.

Suppose the random variable X, follows a chi-square distribution with 5 degrees of freedom. So, it has a mean μ = 5 and standard deviation $\sigma = \sqrt{\sigma^2} = \sqrt{2 \times 5} = \sqrt{10} = 3.162278$ (to 6 decimals). The density curve of the distribution is shown below.

Let's examine the distribution of sample mean \overline{X} with sample size n = 2, 5, 30 respectively.

For each sample size n (# of columns), generate 10000 samples (# of rows). Use the seed 6292 for each n. Calculate the sample mean \bar{x} for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(6292) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Continuous distributions→Chi-squared distribution→Sample from chi-squared distribution...

3. In the "Sample from ChiSquared Distribution" window, type the name of the data file you would like to store the sampled data in Enter name of data set (say ChiSquaredn2), put 5 in Degrees of Freedom, 10000 in Number of samples (rows), and 2 in Number of observations (columns)

4. Select **Sample means** under **Add to Data Set**, it will store the sample mean of the sample in the last column.

- 5. Click OK
- 6. Select ChiSquareIn2 under Data set to make it as active data set
- 7. Click View data set to view the sampled data

R Sample from ChiSquared Distribution	×	obsl	obs2	mean
Contact manual from disks start (Chillion starting)	samplel	5.68106194	4.77234434	5.2267031
Enter name for data set Chisquareute	sample2	4.73580853	7.40927762	6.0725431
and the second se	sample3	4.15914720	14.33996952	9.2495584
begrees of needom 5	sample4	10.88703746	3.25710097	7.0720692
Number of samples (rows) 10000	sample5	5.36875039	2.71004333	4.0393969
Number of observations (columns) 2	sample6	5.32430279	3.75938455	4.5418437
	sample7	10.26503708	4.04548377	7.1552604
Add to Data Set:	sample8	8.92435691	3.16552320	6.0449401
Sample means	sample9	4.31090156	7.82563774	6.0682697
Sample sums	sample10	10.68592406	1.59953616	6.1427301
Sample standard deviations	samplell	0.51222535	5.62373076	3.0679781
	sample12	3.72966417	7.80984745	5.7697558
	sample13	4.83443099	2.70608942	3.7702602
Child	sample14	2.15811269	13.81511981	7.9866162
	sample15	4.17480605	3.30743015	3.7411181
	sample16	4.40274201	3.10031383	3.7515279

8. Graphs→Histogram

- 9. Select "mean" and click OK.
- 10. Statistics→Summaries
- 11. In the "Numerical Summaries" window, select "mean" and click Statistics
- 12. Check "Mean", "Standard Deviation"

13. Repeat steps 1-12 for sample sizes n = 5 and n = 30 (number of columns in "**Sample from ChiSquared Distribution**" window). Type set.seed(6292) and click submit each time before sampling from the chi-square distribution. Use the file names Chisquaredn5 and Chisquaredn30. Never write over a file.

R Commander	R Commander	R Numerical Summaries
File Edit Data Statistics Graphs Models Distributions Tools Help	File Edit Data Statistics Gra	Data Statistics
R Histogram	Data Statistics Variables (pick one or more) mean obs1 obs2 Summarize by groups	 Mean Standard Deviation Standard Error of Mean Interguartile Rangei Coefficient of Variation Skewness Type 1 Kurtosis Type 2 Type 3 Quantiles: 0, 25, 5, 75, 1
Help Reset K Cancel Apply	Breset Seset	🔞 Help 🛛 🦘 Reset 📈 OK

Findings:

- The mean of the sample mean is always very close to the population mean μ = 5 regardless of the sample size n. The difference is because we did not consider all possible samples of size n, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{2\times5}}{\sqrt{n}}$. When n = 2, $\frac{\sqrt{10}}{\sqrt{n}} = \frac{3.162278}{\sqrt{n}} = 2.236$; when n = 5, $\frac{\sqrt{10}}{\sqrt{10}} = \frac{3.162278}{1.62278} = 1.414$; when n = 30, $\frac{\sqrt{10}}{\sqrt{10}} = 1.414$; when n = 30.

When
$$n = 2$$
, $\frac{\sqrt{10}}{\sqrt{n}} = \frac{5102270}{\sqrt{2}} = 2.236$; when $n = 5$, $\frac{\sqrt{10}}{\sqrt{n}} = \frac{5102270}{\sqrt{5}} = 1.414$; when $n = 30$, $\frac{\sqrt{10}}{\sqrt{n}} = \frac{3.162278}{\sqrt{30}} = 0.577$.

 The population is quite right skewed, and the distribution of the sample mean is still right skewed for the relatively small sample sizes of n = 2 and 5. But it is roughly normal when sample size n ≥ 30.

4.6 CENTRAL LIMIT THEOREM FOR THE SAMPLE MEAN

The Central Limit Theorem (CLT) states that when the sample size n is large enough, the sample mean \overline{X} is approximately normally distributed, regardless of the distribution of the variable under consideration (the population distribution).

Note that:

- The central limit theorem is about the **shape of the sample mean** \overline{X} . It is the random variable \overline{X} that will be normally distributed if the sample size n is large enough.
- What constitutes a large enough value of n is depends on the shape of the population distribution. If the population distribution, the distribution of X, is symmetric, $n \ge 5$ might be large enough to claim that the sample mean \overline{X} is normally distributed; if the distribution of X is not too extremely skewed, $n \ge 30$ should be enough; if the population is very skewed, we might need $n \ge 100$ (see the central limit theorem for proportion in the next section).

4.7 CENTRAL LIMIT THEOREM FOR THE SAMPLE PROPORTION

Recall that the population mean $\mu = \frac{\sum x_i}{N}$, where N is the population size (number of individuals in the population), is a population parameter used to describe the population. The population proportion

 $p = \frac{\text{\# of individuals having a certain attribute}}{\text{population size}} = \frac{\text{\# of successes}}{N}$

is another parameter used to describe the population.

For example, the proportion of female students at MacEwan is defined as

 $p = \frac{\text{\# of female students at MacEwan}}{\text{total number of students at MacEwan}} = \frac{\text{\# of successes}}{N}$,

where picking a female student is regarded as a success event.

Just as the sample mean $\bar{x} = \frac{\sum x_i}{n}$ is used to estimate the population mean μ , the sample proportion \hat{p} which is defined as:

$$\hat{p} = \frac{\text{\# of individuals having a certain attribute in the sample}}{\text{sample size}} = \frac{\text{\# of successes in the sample}}{n}$$

is used to estimate the population proportion p.

Inference on the population mean μ is based on the distribution of the sample mean \overline{X} . Similarly, inference on the population proportion p is based on the distribution of the sample proportion \hat{p} .

$$p = \frac{\text{\# of individuals having a certain attribute}}{\text{\# of individuals in the population}} = \frac{\text{\# of successes}}{N}.$$

Population proportion can be regarded as a special population mean if we let the variable of interest be an indicator variable as follows:

$$x_i = \begin{cases} 1 & \text{if the } i\text{th individual has the attribute (a success)} \\ 0 & \text{if the ith individual does not have the attribute.} \end{cases}$$

Then the population proportion can be rewritten as:

$$p = \frac{\text{\# of individuals having a certain attribute}}{\text{\# of individuals in the population}} = \frac{\text{\# of successes}}{N} = \frac{\sum X_i}{N}$$

The variable of interest X has only two possible values: 1 if the individual has the attribute and 0 if not. If we randomly select one individual, the probability that this individual has the attribute is p.

As a result, the probability distribution of *X* is:

x	1	0
P(X = x)	р	1 - p

with a population mean and population standard deviation:

$$\mu = \sum xP(X = x) = 1 \times p + 0 \times (1 - p) = p$$

$$\sigma = \sqrt{\sum x^2 P(X = x) - \mu^2} = \sqrt{1^2 \times p + 0^2 \times (1 - p) - \mu^2} = \sqrt{p - p^2} = \sqrt{p(1 - p)}.$$

When we take a simple random sample of size n, the proportion of individuals in the sample who have the specific attribute is the sample proportion (which can be regarded as a special sample mean \bar{x}).

 $\hat{p} = \frac{\text{\# of individuals having a certain attribute in the sample}}{\text{sample size}} = \frac{\text{\# of successes in the sample}}{n} = \frac{\sum x_i}{n} = \bar{x}$

with $x_i = 1$ if the individual has the attribute and 0 if not.

Therefore, the sampling distribution of the sample proportion \hat{p} has the following properties:

- Center: the mean of the sample proportion p̂ equals the population mean μ; that is
 μ_{p̂} = μ = p.
- **Spread**: the standard deviation of the sample proportion \hat{p} equals the population standard deviation σ divided by the square root of the sample size; that is

$$\sigma_{\hat{p}} = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{p(1-p)}}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}}.$$

These two results above are always true for any sample size n.

• Shape: The population distribution is non-normal. By the central limit theorem (CLT), however, \hat{p} is approximately normal if n is large enough. The thumb of rule is to guarantee both $np \ge 5$ and $n(1-p) \ge 5$, i.e., $n = \max\{\frac{5}{p}, \frac{5}{1-p}\}$, the larger value of $\frac{5}{p}$ and $\frac{5}{1-p}$. Some textbooks require both $np \ge 10$ and $n(1-p) \ge 10$.

Central limit theorem for the sample proportion:

If the sample size n (rule of thumb: $np \ge 5$ and $n(1-p) \ge 5$) is large enough, the sample proportion \hat{p} is approximately normally distributed.

Suppose the population proportion is p = 0.05. By the rule of thumb, a sample size of at least

$$n = \max\left\{\frac{5}{p}, \frac{5}{1-p}\right\} = \max\left\{\frac{5}{0.05}, \frac{5}{1-0.05}\right\} = \max\{100, 5.26\} = 100$$

is required to make the sample proportion \hat{p} be normally distributed. A larger sample size n is required to make the sample proportion \hat{p} to be approximately normally distributed when the population proportion is either closer to 0 or 1.

We can generate data from the population distribution $X = \begin{cases} 1 & \text{with probability } p = 0.05 \\ 0 & \text{with probability } 1 - p = 0.95, \end{cases}$

which is a special binomial distribution with number of trials n = 1 and probability of success p = 0.05.

For this population proportion distribution (where the attribute occurs with a probability of 0.05), we will investigate the sampling distribution of the sample proportion \hat{p} with a sample size of n = 50, 100, 200, 1000 respectively. That is the distribution of the average number of individuals out of n randomly selected individuals who have a certain attribute.

For each sample size n (# of columns), generate 10000 samples (# of rows) sequence of 0s and 1s. Set the seed 59744 in each case. Calculate the sample mean for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample proportion.

1. Type set.seed(59744) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

2. Distributions→Discrete distributions→Binomial distribution→Sample from binomial distribution... 3. In the "Sample from Binomial Distribution" window, type the name of the data file you would like to store the sampled data in Enter name of data set (say Binomialn50), put 1 in Binomial trials, 0.05 in Probability of success, 10000 in Number of samples (rows), and 50 in Number of observations (columns)

4. Select **Sample means** under **Add to Data Set**, it will store the sample proportion of the sample in the last column. Click OK.

5. Select Binomialn50 under Data set to make it as active data set

6. Click View data set to view the sampled data

R Commander	R BinomialnSD								-	D	- 3
e Edit Data Statistics Graphs Modely Distributions Tools Help		642 0	bati s	b#14 (ittetti i	to 4 C	mba47 o	dan 40	ukati di	in 50, p	-
	samplel	0	C-	0	0	-0	0	0	0	0 0	.04
R Sample from Binomial Distribution	samplel	0	0	0	0	0	0	0	0	0.0	.02
	sample3	0	0	0		0	.0	0	0	0 0	+ 04
Enter name for data set: Binomiain50	samples.	8	0	0	0	0	0	9	0	0.0	- 01
	Sample S	× .	0		8	1	8		0	0.0	1.1.4
And the second se	Name and	ő	0		ő	- 0	0	6	6	0.0	.01
binomial mais		ö	0	0	0	3	1	0	0	0.0	.10
Probability of success 0.05	sample?	0	C-	0	0	0	0	0	0	0.0	.0
Number of campies (mar)	mample10	0	0	0	0	0	.0	0	0	1 0	.1
And the state of t	mample11	0	0	0	0	10	0	0	0	0 0	; 0;
Number of observations (columns) 50	wamp1+12	0	G	0	0	-0	-Q	0	¢.	0.0	.0
	mample13	0	0	0	0	0	0	0	0	0 0	.0
Add to Data Cat	sumpleis	8	0	0	0	0	0	0	0	0 0	+0
HEA TO DATA SEC	88mp1+15	8	0			0	0	- k.	0	0 0	- 01
C Sample means	complet 1	- X	0	0			<u></u>	0	0	0.0	- 01
Sample sums	mample10	1	0	ő	8	0	0	0	ö	0.0	. 0:
The second second second second second	10	õ	ő	ő	ŏ.	1	0	0	0	0.0	. 8
	nam:1=20	1	0	0	0	0	0	0	0	0.0	.0

8. Graphs→Histogram

- 9. Select "mean" and click OK.
- 10. Statistics→Summaries
- 11. In the "Numerical Summaries" window, select "mean" and click Statistics

12. Check "Mean", "Standard Deviation"

13. Repeat steps 1-11 for sample size n = 100, 200, 1000 (number of columns in "Sample from Binomial Distribution" window)

R Histogram	(I Mose
Data Optiona	Standard Deviation
Variable (nick one)	Standard Error of Mean
Thema +	Interquartile Range
obs1 E	Coefficient of Variation
obs2	Skewness 🖱 Type 1
0065	🖂 Kurtosis 🔍 Type 2
obs5 +	C Type 3
Plot by groups	1" Quantiles: 0, .25, .5, .75, 1

Findings:

- The mean of the sample proportion is always very close to the population proportion p = 0.05 regardless of the sample size n. The difference is because we did not consider all possible samples of size n, but only 10000 samples.
- The standard deviation of the sample proportion is always close to the theoretical value

$$\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{n}}. \text{ When } n = 50, \\ \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{50}} = 0.0308; \text{ when } n = 100, \\ \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{100}} = 0.0218; \text{ when } n = 200, \\ \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{200}} = 0.0154; \text{ when } n = 1000, \\ \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{1000}} = 0.0069$$

• The population is extremely right skewed, and the distribution of the sample proportion is still right skewed for relatively large sample sizes n = 50. It is still slightly right skewed when n = 100, even though n = 100 should large enough according to the rule of thumb. But it is roughly normal when sample size n = 200 and 1000.

Recall that the central limit theorem tells us that the sample mean \overline{X} will be approximately normally distributed when the sample size n is large enough. The rule of thumb is $n \ge 30$. However, how large n is large enough to make the sample mean \overline{X} be normally distributed depends on how far the population distribution departs from a normal distribution; the further the population distribution is away from a normal distribution, the larger the sample size n is required. If the population distribution is continuous and not extremely skewed, n=30 should be large enough; however, if the population distribution is discrete (like the Bernoulli distribution for sample proportion), a much larger n is required, say n=200 or more.

LAB 5 CONFIDENCE INTERVAL AND HYPOTHESIS TESTS FOR ONE MEAN

There are two types of statistics: descriptive and inferential statistics. We will focus on inferential statistics hereafter. Inferential statistics include estimation and hypothesis testing. Estimation is to estimate the value of a population parameter; hypothesis testing is to test whether a statement about the value of a population parameter is true or false. This lab illustrates how to obtain a confidence interval and conduct a hypothesis test for the population mean μ based on one simple random sample.

A general form for a confidence interval for a population parameter is

 $point estimate \pm error = point estimate \pm multiplier \times Standard Error of the estimator.$

General steps to set up the hypotheses:

- 1. Look for the key words, write down what we want to claim under the alternative H_a .
- 2. Take the opposite of the alternative H_a to obtain the null H_0 . Depending on the purpose of the hypothesis test, there are three choices for H_a :

Two tailed	Right (upper) tailed	Left (lower) tailed
$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$
"differ", "change"	"more than", "increase"	"less than", "decrease"

Depending on whether the population standard deviation σ is known or not, we can use the one-sample z test and interval or the one-sample t test and interval.

5.1 One-Sample z Test and Interval When the Population Standard Deviation is Known

Use the one-sample z test and z interval when the population standard deviation σ is known. The assumptions and steps to conduct a one-sample z test and z interval are as follows.

Assumptions:

- 1. A simple random sample (SRS)
- 2. Normal population or large sample size ($n \ge 30$)
- 3. The population standard deviation σ is known

Steps:

1. Set up the hypotheses:

$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$
$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$

- 2. State the significance level α .
- 3. Compute the value of the test statistic: $z_o = \frac{\bar{x} \mu_0}{\sigma/\omega}$.
- 4. Find the P-value or rejection region:

	$H_0:\mu=\mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$
	$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$
P-value	$2P(Z \ge z_o)$	$P(Z \ge z_o)$	$P(Z \leq z_o)$
Rejection region	$Z \ge z_{\alpha/2} \text{ or } Z \le -z_{\alpha/2}$	$Z \ge z_{\alpha}$	$Z \leq -z_{\alpha}$
		•	

 $z_{\alpha/2}$ is the z value for which $P(Z > z_{\alpha/2}) = \alpha/2$

- 5. Reject the null H_0 if P-value $\leq \alpha$ or z_o falls in the rejection region.
- 6. Conclusions.

A corresponding ($(1 - \alpha) \times$	100% one-sample a	z confidence interval	l is given	by
-------------------	-----------------------	-------------------	-----------------------	------------	----

	Two-sided Interval	Upper Tailed Interval	Lower Tailed Interval		
	$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$		
	$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$		
(1-lpha) imes 100% Cl	$(\bar{x} - z_{\alpha} \frac{\sigma}{2} \sqrt{n}, \bar{x} + z_{\alpha} \frac{\sigma}{2} \sqrt{n})$	$(\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$	$(-\infty, \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$		
Decision	Reject H_0 if μ_0 is outside the interval				

Interpretation of the confidence interval: we can be $(1 - \alpha) \times 100\%$ confident that the population mean μ is within the interval.

5.2 ONE-SAMPLE *t* TEST AND INTERVAL WHEN THE POPULATION STANDARD DEVIATION IS

UNKNOWN

Given that the population is normal **OR** the sample size *n* is large enough, the sample mean \overline{X} can be regarded to be normally distributed, i.e., $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

The population standard deviation σ is usually unknown and can be estimated by the sample standard deviation *s*.

When the population distribution is normal, the standardized variable $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$.

When the population distribution is normal, the studentized variable

$$t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t$$
 distribution with $df = n - 1$.

The assumptions and steps to conduct a one-sample t test and t interval for one population mean μ are as follows.

Assumptions:

- 1. A simple random sample (SRS)
- 2. Normal population or large sample size $(n \ge 30)$
- 3. The population standard deviation σ is unknown

Steps:

1. Set up the hypotheses:

$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$
$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$

2. State the significance level α .

- 3. Compute the value of the test statistic: $t_o = \frac{\bar{x} \mu_0}{s_{1/2}}$ with df = n 1.
- 4. Find the P-value or rejection region:

	$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$
	$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$
P-value	$2P(t \ge t_o)$	$P(t \ge t_o)$	$P(t \leq z_o)$
Rejection region	$t \ge t_{lpha/2}$ or $t \le -t_{lpha/2}$	$t \ge t_{\alpha}$	$t \leq -t_{\alpha}$

 $t_{\alpha/2}$ is the t value for which $P(t > t_{\alpha/2}) = \alpha/2$.

5. Reject the null H_0 if P-value $\leq \alpha$ or t_o falls in the rejection region.

6. Conclusions.

	Two-sided Interval for Two-sided Test	Upper Tailed Interval for Right Tailed Test	Lower Tailed Interval for Left Tailed Test			
	$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \ge \mu_0$			
	$H_a: \mu \neq \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu < \mu_0$			
(1-lpha) imes 100% Cl	$(\bar{x} - t_{\alpha}\frac{s}{2}\sqrt{n}, \bar{x} + t_{\alpha}\frac{s}{2}\sqrt{n})$	$(\bar{x}-t_{lpha}rac{s}{\sqrt{n}},\infty)$	$(-\infty, \bar{x} + t_{\alpha} \frac{s}{\sqrt{n}})$			
Decision	Reject ${H}_0$ if ${\mu}_0$ is outside the interval					

Interpretation of the confidence interval: we can be $(1 - \alpha) \times 100\%$ confident that the population mean μ is within the interval.

NUANCE: Students should note that although the Central Limit Theorem tells us that for any unknown population distribution shape with large n, the sampling distribution of $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ is approximately normal, it actually does not tell us that for any unknown population distribution shape with large n, $t = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ is approximately normal or approximately a t distribution. However, it is sensible to think that s will be close to sigma (a good estimate) when n is large, and therefore that t values calculated will be close to z values when n is large. So it is not untoward to think that $\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ values will be approximately $\frac{\bar{X} - \mu}{\sqrt{n}}$ values for large n and thus the sampling distribution will indeed have a normal shape (regardless of the parent population shape). We also note that a t distribution with n – 1 degrees of freedom is approximately normal for large n. Some textbooks suggest that students doing problems that entail finding the test statistic t = $\frac{\bar{X} - \mu}{\sqrt{n}}$ proceed to calculate p-values and rejection region critical values using the standard normal distribution, Z. This is useful because t tables are not comprehensive when n >=30. Other textbooks suggest that students doing problems that entail finding the test statistic t = $\frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$ use the t distribution with n – 1 df to calculate p-values and rejection region critical values when n is large. This is generally just fine because these values can be readily calculated online.

The software R Commander finds p values and critical values for a t distribution with n - 1 degrees of freedom when you use it to do a single sample t test.

Example: A machine fills beer into bottles whose volume is supposed to be 341 ml, but the exact amount varies from bottle to bottle. We randomly pick 50 bottles and actual volume of each bottle is given in the data file. The sample mean volume is 338.428 ml and sample standard deviation s = 5.238 ml.

343.8	339.8	347.3	348.4	338.1	333.1	345.8	342.7	341.0	336.5
338.6	337.8	339.2	341.7	339.0	343.0	333.4	332.8	337.1	338.0
338.8	331.3	343.6	331.8	338.4	345.3	333.7	344.4	337.0	347.0
336.0	341.4	330.5	328.7	340.8	337.4	336.9	326.4	344.3	329.2
334.4	339.6	341.5	334.2	333.0	337.8	343.3	337.4	346.4	333.8

Note: the data were generated from a normal distribution with mean 339 and standard deviation 5 with random number generator seed 4067, rounded to one decimal place.

For this problem, please download the dataset beer.xlsx from online. Then import it into R commander and called it beer, say.

- (a) Test at the 5% significance level whether the machine is NOT working properly.
- (b) Obtain a 95% confidence interval for the population mean volume. Interpret the interval.
- (c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)?
- (d) Test at the 1% significance level whether the mean volume is below 341 ml.

Check the assumptions:

- We have a simple random sample.
- We have a large sample with sample size n = 50 > 30; therefore, it does not matter whether the population is normal or not. However, we can draw a normal probability (Q-Q) plot, a histogram, and a boxplot to check the normality of the sample data. For your imported dataset called beer, use the Graphs→Histogram, Graphs→boxplot, and Graphs→Quantile-comparison plot commands. All the graphs of the summarized sample data shown below suggest (or do not contradict) that the sample data was taken from a normal population.

Please note that the best way to check the normality assumption is a normal Q-Q plot, especially when the sample size is not very large. In general, a boxplot cannot show whether the data are from a normal population. A histogram can be misleading and cannot show whether the data have a bell-shaped distribution when the sample size is not large enough.

• The population standard deviation σ is unknown.

The assumptions for a one-sample *t* test are met.

To run a one-sample *t* test in R Commander:

- 1. Statistics→Means→Single-sample t test
- 2. In the "Single-Sample t-Test" window, pick "Volume" as the variable. Choose the alternative hypothesis: two-tailed (!=mu0). Specify the hypothesized value "mu=341", i.e., $\mu_0 = 341$. Specify the "Confidence Level: 0.95", i.e., the significance level $\alpha = 0.05$.
- 3. Click OK

One Sample t-test

```
data: Volume
t = -3.4718, df = 49, p-value = 0.001089
alternative hypothesis: true mean is not equal to 341
95 percent confidence interval:
336.9392 339.9168
sample estimates:
mean of x
338.428
```

- (a) Test at the 5% significance level whether the machine is NOT working properly. If the machine is working properly, $\mu = 341$ ml; if the machine is not working properly, $\mu \neq 341$ ml. The steps for a one-sample *t* test are:
 - Hypotheses. $H_0: \mu = 341$ ml versus $H_a: \mu \neq 341$ ml
 - The significance level is $\alpha = 0.05$.
 - Compute the value of the test statistic: $t_o = \frac{\bar{x} \mu_0}{s_{1/\sqrt{n}}} = -3.4718$, with df = n 1 = 49
 - The P-value = $2P(t \ge |t_0|) = 2P(t \ge 3.4718) = 0.001089$
 - Since P-value= $0.001089 < 0.05 (\alpha)$, reject H_0 .
 - Conclusion: At the 5% significance level, the data provide sufficient evidence that the machine is NOT working properly.
- (b) Obtain a 95% confidence interval for the population mean volume. Interpret the interval. A 95% confidence interval for the population mean volume is (336.9392, 339.9168) ml. **Interpretation**: we can be 95% confident that the population mean volume μ is somewhere between 336.9392 ml and 339.9168 ml.
- (c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)? Yes. In part (a), we reject H_0 and claim that the machine is not working properly, i.e., $\mu \neq 341$ ml. In part (b), the interval does not contain 341; therefore, we can be 95% confident that $\mu \neq 341$ ml and it supports the conclusion of the hypothesis test in part (a).
- (d) Test at the 1% significance level whether the mean volume is **below** 341 ml.

- Hypotheses. $H_0: \mu \ge 341 \text{ ml versus } H_a: \mu < 341 \text{ ml}$
- The significance level is $\alpha = 0.01$.
- Compute the value of the test statistic: $t_o = \frac{\bar{x} \mu_0}{s/\sqrt{n}} = -3.4718$, with df = n 1 = 49
- The P-value= $P(t < t_0) = P(t < -3.3718) = P(t \ge 3.4718) = 0.0005447$
- Since P-value= $0.0005447 < 0.01 (\alpha)$, reject H_0 .
- Conclusion: At the 1% significance level, the data provide sufficient evidence that the mean volume is below 341 ml.

(e) Obtain a confidence interval corresponding to the test in part (d). Does the interval support the conclusion of the test in part (d)?

A left-tailed test at the 1% significant level corresponds to a 99% lower-tailed confidence interval. A 99% lower-tailed confidence interval for the population mean volume is $(-\infty, \bar{x} + t_{\alpha} \frac{s}{\sqrt{n}}) = (-\infty, 340.2096)$. Interpretation: we can be 99% confident that the population mean volume μ is somewhere below 340.2096 ml. Since the entire interval is below 341, we can claim that $\mu < 341$ ml. This supports the conclusion of the hypothesis test in part (d).

5.3 RELATION BETWEEN CONFIDENCE INTERVAL AND HYPOTHESIS TESTS

Recall:

Two-sided confidence intervals correspond to two-tailed tests, upper-tailed confidence intervals correspond to right-tailed tests, and lower-tailed confidence intervals correspond to left-tailed tests.

A $(1 - \alpha) \times 100\%$ two-sided t confidence interval is given in the form $(\bar{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})$.

A $(1 - \alpha) \times 100\%$ upper-tailed *t* confidence interval is given by $(\bar{x} - t_{\alpha} \frac{s}{\sqrt{n}}, \infty)$ and the number $\bar{x} - t_{\alpha} \frac{s}{\sqrt{n}}$ is called the lower bound of the interval.

A $(1 - \alpha) \times 100\%$ lower-tailed *t* confidence interval is given by $(-\infty, \bar{x} + t_{\alpha} \frac{s}{\sqrt{n}})$ and the number $(\bar{x} + t_{\alpha} \frac{s}{\sqrt{n}})$ is called the upper bound of the interval.

Remember:

We can use the confidence intervals to make conclusions about hypothesis tests: reject the null hypothesis H_0 at the significance level α if the corresponding $(1 - \alpha) \times 100\%$ confidence interval does not contain the hypothesized value μ_0 .

Confidence interval (CI) and hypothesis testing (HT) should give consistent results: we should not reject H_0 at the significance level α if the corresponding $(1 - \alpha) \times 100\%$ confidence interval contains the hypothesized value μ_0 .

LAB 6 CONFIDENCE INTERVAL & HYPOTHESIS TESTS FOR TWO MEANS

Suppose we have two populations with means μ_1 and μ_2 respectively. This lab covers how to obtain a confidence interval and conduct a hypothesis test for the difference between the two population means, i.e., $\mu_1 - \mu_2$, using R commander. Depending on whether the two samples are independent or paired, we have a two-sample t test or a paired t test, respectively.

6.1 TWO-SAMPLE *t* TEST AND *t* INTERVAL BASED ON TWO INDEPENDENT SAMPLES

The two-sample t test can be used to test hypotheses on the difference between two population means. Depending on whether the two population standard deviations (σ_1 and σ_2) are equal or not, we use the non-pooled and pooled two sample t test and t interval, respectively. Minor advantages of the pooled t test are that it provided a slightly narrower confidence interval, a slightly more powerful test, and a simpler formula for the degrees of freedom. However, a pooled t test is valid only when the two population standard deviations are identical; otherwise, it gives invalid results. Therefore, we recommend using the non-pooled t test unless we are very confident that $\sigma_1 = \sigma_2$ (which is very difficult to verify).

6.1.1 Non-pooled Two-Sample t Test and t Interval

Assumptions:

- 1. Simple random samples;
- 2. Two samples are independent;
- 3. Normal populations or large sample sizes (rule of thumb: $n_1 \ge 30, n_2 \ge 30$).

Steps:

1. Set up the hypotheses:

Two tailed test	Right (upper) tailed test	Left (lower) tailed test
$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$
$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$

Note that Δ_0 can be zero or any value you would like to test.

- 2. State the significance level α .
- 3. Compute the value of the test statistic: $t_o = \frac{(\bar{x}_1 \bar{x}_2) \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ with $df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 1}\left(\frac{s_2^2}{n_2}\right)^2}$ rounded **down**

to the nearest integer, i.e., take the integer part.

4. Find the P-value or rejection region:

	$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$
	$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$
P-value	$2P(t \ge t_o)$	$P(t \ge t_o)$	$P(t \leq t_o)$
Rejection region	$t \ge t_{lpha/2}$ or $t \le -t_{lpha/2}$	$t \ge t_{\alpha}$	$t \leq -t_{\alpha}$

- 5. Decision: reject the null H_0 if P-value $\leq \alpha$ or if t_o falls in the rejection region.
- 6. Conclusions.

	Two-sided Interval for Two-sided Test	Upper Tailed Interval for Right Tailed Test	Lower Tailed Interval for Left Tailed Test		
	$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$		
	$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$		
Interval	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$((\bar{x}_1 - \bar{x}_2) - t_{\alpha} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \infty)$	$(-\infty,(\bar{x}_1-\bar{x}_2)+t_{\alpha}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}})$		
Decision	Reject H_0 if Δ_0 is outside the interval				

$A(1-\alpha)$) × 100%	two-sample t	confidence	interval for	$\mu_1 -$	μ_2 is:
---------------	----------	--------------	------------	--------------	-----------	-------------

Example: Two-sample t Test and t Interval Assuming Standard Deviations Not Equal

Some students attend class regularly, but some do not. An instructor wants to compare the class average for those who attend lectures regularly (μ_1) with those who do not (μ_2). Simple random samples are randomly selected from attendees and non-attendees. Their attending status (Attend/Non-Attend) and final grade (in %) are given in the following table (grades to 2 decimals places). Data are stored in "example_twosample_grade.xlsx", which can be found online, and has 13 decimal places for grades. Note that practising students should download the online file and use it, as typing or copying/pasting the data shown below to their own Excel file and using it (with grades to 2 decimal places) will not yield the answers found in the descriptions and inference done below.

Attend	69.68	Attend	77.56	Attend	65.03	Attend	89.30	Attend	87.75
Non-Attend	61.21	Non-Attend	64.76	Non-Attend	65.04	Attend	68.54	Non-Attend	35.62
Attend	80.43	Attend	66.01	Attend	57.08	Attend	71.24	Attend	96.51
Attend	80.97	Attend	78.10	Attend	95.86	Attend	49.19	Non-Attend	65.81
Non-Attend	60.74	Attend	95.54	Attend	83.32	Non-Attend	39.30	Attend	82.82
Attend	83.34	Attend	67.50	Attend	74.53	Non-Attend	78.46	Attend	83.00
Attend	72.03	Attend	93.30	Attend	55.24	Attend	81.23	Non-Attend	42.94
Non-Attend	77.11	Attend	85.03	Attend	76.27	Non-Attend	80.67	Attend	80.14
Attend	75.49	Non-Attend	82.50	Attend	74.76	Non-Attend	64.32	Attend	79.47
Attend	75.03	Non-Attend	54.10	Attend	61.58	Attend	47.77	Attend	72.49
Attend	90.86	Non-Attend	78.71	Attend	62.91	Attend	93.26	Non-Attend	85.07
Attend	86.87	Non-Attend	47.67	Non-Attend	51.30	Non-Attend	70.68	Non-Attend	55.65
Attend	96.32	Attend	76.51	Attend	77.06	Attend	68.40	Attend	72.66
Attend	50.62	Attend	85.97	Attend	80.24	Non-Attend	39.39	Attend	90.25
Attend	83.13	Attend	85.19	Attend	70.16	Attend	68.12	Attend	87.75
Non-Attend	72.80	Attend	78.40	Attend	66.06	Attend	86.51	Non-Attend	55.38
Attend	71.22	Non-Attend	67.34	Non-Attend	42.39	Non-Attend	87.30	Non-Attend	80.88

- (a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data.
- (b) Test at the 1% significance level whether those who attend lectures have a **higher average**, i.e., $\mu_1 > \mu_2$ or $\mu_1 \mu_2 > 0$.
- (c) Obtain a confidence interval for the difference between the class average for attendees and nonattendees, $\mu_1 - \mu_2$, that corresponds to the test in part (b).
- (d) Based on the interval obtained in part (c), can we claim that the class average of attendees is at least 5% higher than that of the non-attendees? How about 10% higher?

Solutions:

- (a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data. We want to compare the grade between attendants and non-attendants. Note that grade is a quantitative continuous variable. Hence, to compare the two groups numerically, we use the five-number summary (min, Q_1 , median, Q_3 , max), mean and standard deviation for each group, while graphically, we use a side-by-side histogram and/or a side-by-side boxplot.
 - 1. Statistics→Summaries→Numerical Summaries...
 - 2. In the "Numerical Summaries" window, select "Grade" as the variable.
 - 3. Click **"Summarize by groups...**", in the **"Groups"** window, choose **"Attend**" as the grouping variable. Click OK
 - 4. Click "Statistics", check "Mean", "Standard Deviation", "Interquartile Range", and "Quantiles", click OK.

Here are the findings from the numerical summaries:

- 1. There are $n_1 = 58$ attendees and $n_2 = 27$ non-attendees.
- 2. The sample mean for the attendees is $\bar{x}_1 = 76.925\%$. The sample mean for the non-attendees is $\bar{x}_2 = 63.228\%$, which is 13.697% lower than the mean of the attendees. The attendees also have a larger median (50% quantile) than their non-attendees counterpart, 77.830% versus

64.762% (that is; the median for the non-attendees is 13.068% lower than the median for the attendees).

- 3. The sample standard deviation for the attendees is $s_1 = 11.827\%$ and the sample standard deviation for the non-attendees is $s_2 = 15.480\%$. There is a larger variation in grade among non-attendees. This can be also found through the IQR. The IQR is 15.353% for attendees and 25.084% for non-attendees.
- 4. The attendees have a larger maximum grade than non-attendees, 96.514% versus 87.295%; the attendees also have a higher minimum grade, 47.769% versus 35.621%.

All the findings above can be also seen from the plots created below.

R Commander		Steps for side-by-side histogram
Carabination Statistics Graphing Carabination Content of Content o	Models Distributions Tools Help	 Graphs→Histogram In the "Histogram" window, selec "Grade" as the variable Click "Plot by groups", in the "Groups" window, choose
Plot by groups	Attensi OK & Cancel Apply	"Attend" as the grouping variableClick OK4. Click OK

R R Commander	Steps for side-by-side boxplot
File Edit Data Statistics Graphs Models Distributions Tools Help R Boxplot Data Options	 Graphs→Boxplot In the "Boxplot" window, select "Grade" as the variable
Plot by groups	 3. Click "Plot by groups", in the "Groups" window, choose "Attend" as the grouping variable. Click OK 4. Click OK
🔞 Help	Apply

(b) Test at the 1% significance level whether those who attend lectures have a higher average, i.e., $\mu_1 > \mu_2$ or $\mu_1 - \mu_2 > 0$.

Use a two-sample *t* test since the samples (the attendees and the non-attendees) are independent.

- 1. Statistics→Means→Independent Sample t-Test...
- In the "Independent Sample t-Test" window, select "Attend" as the grouping variable and "Grade" as the response variable, since we want to compare the grades between attendants and non-attendants.
- 3. Click "**Options**", in the "**Options**" window, choose "**Difference>0**" as the **Alternative Hypothesis**, because we want to test whether $\mu_1 > \mu_2$ or the difference $\mu_1 \mu_2 > 0$. Type **0.99** in the box under "**Confidence Level**", since the significance level $\alpha = 0.01$ which corresponds to a confidence level $1 \alpha = 1 0.01 = 0.99$. Check "**No**" under "**Assume equal variances**" for a non-pooled two-sample *t* test. Click OK.
- 4. Click OK

R Commander File Edit Data Statistical Graphs Models Distributions Tools Help	R Independent Samples t-Test				
R Independent Samples t-Test	Data Options				
Data Options	Difference: Attend - Non-Attend				
Groups (pick one) Response Variable (pick one)	Alternative Hypothesis Confidence Level Assume equal variances? Two-sided 39 Yes Difference < 0 No Difference > 0 No				
🕲 Help 🔥 Reset 🖌 OK 🗱 Cancel 🥐 Apply	🔞 Help 👌 Reset 📝 OK 🗱 Cancel 🥐 Apply				

Welch Two Sample t-test

```
data: Grade by Attend
t = 4.077, df = 40.68, p-value = 0.0001032
alternative hypothesis: true difference in means is greater than 0
99 percent confidence interval:
5.561483 Inf
sample estimates:
    mean in group Attend mean in group Non-Attend
    76.92475 63.22769
```

Steps:

- Hypotheses. $H_0: \mu_1 \mu_2 \leq \mathbf{0}$ ml versus $H_a: \mu_1 \mu_2 > 0$
- The significance level is $\alpha = 0.01$.
- Compute the value of the test statistic: $t_o = \frac{(\bar{x}_1 \bar{x}_2) \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(\bar{x}_1 \bar{x}_2) \mathbf{0}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = 4.077$, with degrees

of freedom
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2} = 40.68$$

- The P-value= $P(t > t_o) = P(t > 4.077) = 0.0001032$
- Since P-value= $0.0001032 < 0.01 (\alpha)$, reject H_0 .
- Conclusion: At the 1% significance level, the data provide sufficient evidence that those who attend lectures have a higher average.
- (c) Obtain a confidence interval for the difference between the class average for attendees and nonattendees $\mu_1 - \mu_2$ corresponding to the test in part (b).

For a **right-tailed** test at significance level $\alpha = 0.01$, the corresponding confidence interval is a $(1 - \alpha) \times 100\% = 99\%$ **upper-tailed** confidence interval. Based on the computer output above, a 99% confidence interval is

$$((\bar{x}_1 - \bar{x}_2) - t_\alpha \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \infty) = (5.5615, \infty).$$

Interpretation: we can be 99% confident that the difference between the class average for attendees and non-attendees $\mu_1 - \mu_2$ is at least 5.5615%, i.e., we can be 99% confident that the class average for attendees is at least 5.5615% higher than that of the non-attendees.

(d) Based on the interval obtained in pat (c), can we claim that the class average of attendees is at least 5% higher than that of the non-attendees? How about 10% higher?

We can claim that the class average of attendees is at least 5% higher than that of the nonattendees since the entire interval for $\mu_1 - \mu_2$ is above 5%, that is, $\mu_1 - \mu_2 > 5$ with $\Delta_0 = 5$.

We can not claim that the class average of attendees is at least 10% higher than that of the nonattendees since the entire interval contains 10. Therefore, we do not have sufficient evidence to claim $\mu_1 - \mu_2 > 10$ where $\Delta_0 = 10$.
$$|_{0}$$
 5 5.5615 10∞
 $\mu_{1} - \mu_{2} > 5.5615$

6.1.2 Pooled Two-Sample t Test and t Interval

If the two population standard deviations are equal, i.e., $\sigma_1 = \sigma_2 = \sigma$, we can pool the two samples together to get a better estimate of the common standard deviation σ

$$\hat{\sigma} = s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

where the term $(n_1 - 1)s_1^2 = \sum_{sample 1} (x - \bar{x}_1)^2$ is the variation of the data within sample 1, and $(n_2 - 1)s_2^2 = \sum_{sample 2} (x - \bar{x}_2)^2$ is the variation of the data within sample 2. Recall that the standard deviation of $\bar{X}_1 - \bar{X}_2$ is $\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$. Thus, if $\sigma_1 = \sigma_2 = \sigma$, then $\sigma_{\bar{X}_1 - \bar{X}_2}$ reduces to $\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}} = \sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$. Estimating σ with s_p leads to the pooled test statistic:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t \ distribution$$

with $df = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2$.

The assumption $\sigma_1 = \sigma_2$ is very difficult to verify. Some textbooks suggest a rule of thumb: if the ratio of the larger to the smaller sample standard deviation is less than 2, then the assumption is considered to be met, i.e., $\frac{\max\{s_1, s_2\}}{\min\{s_1, s_2\}} < 2$. The assumptions and steps for a two-sample pooled t test are as follows.

Assumptions:

- 1. Simple random samples;
- 2. Two samples are independent;
- 3. Normal populations or large samples $(n_1 \ge 30, n_2 \ge 30)$;
- 4. Equal standard deviation $\frac{\max\{s_1, s_2\}}{\min\{s_1, s_2\}} < 2$.

Steps:

1. Set up the hypotheses:

Two tailed test	Right (upper) tailed test	Left (lower) tailed test
$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \leq \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$
$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$

Note that Δ_0 can be zero or any value you would like to test.

2. State the significance level α .

3. Compute the value of the test statistic:
$$t_o = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 with $df = n_1 + n_2 - 2$.

4. Find the P-value or rejection region:

	$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$
	$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$
P-value	$2P(t \ge t_o)$	$P(t \ge t_o)$	$P(t \leq t_o)$
Rejection region	$t \ge t_{\alpha/2}$ or $t \le -t_{\alpha/2}$	$t \ge t_{\alpha}$	$t \leq -t_{\alpha}$

5. Decision: reject the null H_0 if P-value $\leq \alpha$ or t_o falls in the rejection region.

6. Conclusions.

A $(1 - \alpha) \times 100\%$ two-sample pooled *t* confidence interval for $\mu_1 - \mu_2$ is:

	Two-sided Interval for	Upper Tailed Interval	Lower Tailed Interval
	Two-sided Test	for Right Tailed Test	for Left Tailed Test
	$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_0: \mu_1 - \mu_2 \ge \Delta_0$
	$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$H_a: \mu_1 - \mu_2 > \Delta_0$	$H_a: \mu_1 - \mu_2 < \Delta_0$
Interval	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$((\bar{x}_1 - \bar{x}_2) - t_{\alpha} \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \infty)$	$(-\infty, (\bar{x}_1 - \bar{x}_2) + t_{\alpha} \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$
Decision		Reject H_0 if Δ_0 is outside the inte	rval

Example: Pooled two-sample *t* Test and Interval

Is it reasonable to conduct a pooled two-sample *t* test to test whether those who attend lectures have a higher average? If yes, conduct the test at the 1% significance level.

Since $\frac{\max\{s_1, s_2\}}{\min\{s_1, s_2\}} = \frac{\max\{11.827, 15.480\}}{\max\{11.827, 15.480\}} = \frac{15.480}{11.827} < 2$, it is reasonable to conduct a pooled two-sample t test.

1. Statistics→Means→Independent Sample t-Test...

- 2. In the "Independent Sample t-Test" window, select "Attend" as the grouping variable and "Grade" as the response variable, since we want to compare the grades between attendants and non-attendants.
- Click "Options", in the "Options" window, choose "Difference>0" as the Alternative Hypothesis. Type 0.99 in the box under "Confidence Level". Check "Yes" under "Assume equal variances" for a pooled two-sample t test. Click OK.
- 4. Click OK

Edit Data Summer Israphi Modeli Dittributioni Tooli Help	Data Options
Data Options	Difference: Attend - Non-Attend
Groups (pick one) Response Variable (pick one)	Alternative Hypothesis Confidence Level Assume equal variances? Two-sided .99

Two Sample t-test

Steps:

- Hypotheses. $H_0: \mu_1 \mu_2 \leq 0$ ml versus $H_a: \mu_1 \mu_2 > 0$
- The significance level is $\alpha = 0.01$.
- Compute the value of the test statistic: $t_o = \frac{(\bar{x}_1 \bar{x}_2) \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(\bar{x}_1 \bar{x}_2) \mathbf{0}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 4.4942$, with degrees
 - of freedom $df = n_1 + n_2 2 = 58 + 27 2 = 83$.
- The P-value= $P(t > t_o) = P(t > 4.4942) = 0.00001121.$
- Since P-value= $0.00001121 < 0.01 (\alpha)$, reject H_0 .
- Conclusion: At the 1% significance level, the data provide sufficient evidence that those who attend lectures have a higher average.

The corresponding 99% upper-tailed interval is $(6.4675, \infty)$. The result is very similar to that of a non-pooled two-sample *t* test.

6.1.3 Non-Pooled Versus Pooled Two-Sample t Test

Now, it comes to the question: shall we use pooled or non-pooled t-test?

The advantages of the pooled *t* test are:

- A much simpler formula to calculate the degrees of freedom;
- A slightly narrower confidence interval and a slightly more powerful test.

However, the pooled t test is valid only when the standard deviations of two groups are the same; otherwise, the pooled method gives misleading results.

It is even harder to test whether the two standard deviations are equal or not. Therefore, we recommend using the non-pooled two-sample *t* test by default; apply the pooled two-sample *t* test only if you are very confident that the two standard deviations are the same.

6.2 PAIRED **t** TEST AND **t** INTERVAL BASED ON PAIRED SAMPLE

Two samples are considered **paired** if each observation in the first sample is related to one and only one observation in the second sample. A paired t test and a paired t interval are exactly a one-sample t test and a one-sample t interval on the **paired differences** respectively.

Assumptions:

- 1. The paired difference d_i , $i = 1, \dots, n$ is a simple random sample (SRS) from all possible pairs
- 2. The paired differences follow a normal distribution or large number of pairs ($n \ge 30$)

Steps:

1. Set up the hypotheses:

$H_0: \mu_1 - \mu_2 = \delta_0$	$H_0: \mu_1 - \mu_2 \le \delta_0$	$H_0: \mu_1 - \mu_2 \ge \delta_0$
$H_a: \mu_1 - \mu_2 \neq \delta_0$	$H_a: \mu_1 - \mu_2 > \delta_0$	$H_a: \mu_1 - \mu_2 < \delta_0$

Note: δ_0 can be any value tested, in most cases $\delta_0 = 0$. Some textbooks state the hypotheses using $\mu_d = \mu_1 - \mu_2$.

- 2. State the significance level α .
- 3. Compute the value of the test statistic: $t_o = \frac{\bar{d} \delta_0}{\frac{s_d}{\sqrt{n}}}$ with degree of freedom df = n 1, where n is the number of pairs and

$$\bar{d} = \frac{\sum d_i}{n}, s_d = \sqrt{\frac{\left(\sum d_i^2\right) - \frac{\left(\sum d_i^2\right)^2}{n}}{n-1}}.$$

4. Find the P-value **or** rejection region:

	$H_0: \mu_1 - \mu_2 = \delta_0$	$H_0: \mu_1 - \mu_2 \le \delta_0$	$H_0: \mu_1 - \mu_2 \ge \delta_0$
	$H_a: \mu_1 - \mu_2 \neq \delta_0$	$H_a: \mu_1 - \mu_2 > \delta_0$	$H_a: \mu_1 - \mu_2 < \delta_0$
P-value	$2P(t \ge t_o)$	$P(t \ge t_o)$	$P(t \leq t_o)$
Rejection region	$t \ge t_{\alpha/2}$ or $t \le -t_{\alpha/2}$	$t \ge t_{\alpha}$	$t \leq -t_{\alpha}$

5. Reject the null H_0 if P-value $\leq \alpha$ or t_o falls in the rejection region.

6. Conclusions.

A $(1 - \alpha) \times 100\%$ confidence interval for $\mu_d = \mu_1 - \mu_2$ corresponding to a hypothesis test at the significance level α is:

	$H_0: \mu_1 - \mu_2 = \delta_0$	$H_0: \mu_1 - \mu_2 \le \delta_0$	$H_0: \mu_1 - \mu_2 \ge \delta_0$
	$H_a: \mu_1 - \mu_2 \neq \delta_0$	$H_a: \mu_1 - \mu_2 > \delta_0$	$H_a: \mu_1 - \mu_2 < \delta_0$
(1-lpha) imes 100% CI	$(\bar{d} - \frac{t_{\alpha}}{2}\frac{s_d}{\sqrt{n}}, \bar{d} + \frac{t_{\alpha}}{2}\frac{s_d}{\sqrt{n}})$	$(\bar{d} - t_{lpha} \frac{s_d}{\sqrt{n}}, \infty)$	$(-\infty, \bar{d} + t_{\alpha} \frac{S_d}{\sqrt{n}})$
Decision	Reject H_0 if δ_0 is outside the integration of the second s	erval	

Example: Paired t Test and Paired t Interval

Eleven people participate in a diet program, their weights in pounds before and after taking the program are listed below. Please download the file pair_diet.xlxs from online and import it into R commander.

Before	After	Paired Differences
(ai ni)	(ai ni)	u_i – Before – After
130	100	30
140	115	25
160	140	20
110	115	-5
120	120	0
150	130	20
160	130	30
100	110	-10
180	140	40
200	150	50
130	120	10

- (a) Test at the 1% significance level whether the diet program is effective in reducing weight.
- (b) Obtain a confidence interval corresponding to the test in part (a).
- (c) Does the interval in part (b) support the conclusion in part (a)?
- (d) Is it possible to claim that on average the diet program can reduce weight by more than 5 pounds? Explain why.

Check the assumptions:

- 1. We have a simple random sample in the paired differences.
- 2. We have eleven pairs, not a large number of pairs (n < 30). Therefore, we need to check whether the paired differences are taken from a normal population.

Draw a normal probability plot on the sample of paired differences and look for a straight line.

- 1. Import the data. Data→Import data→from Excel file pair_diet.xlsx (name it "diet")
- 2. Graphs→Quantile-comparison plot...

In the "Quantile-Comparison (QQ) Plot" window, choose "Difference" as the variable to plot. Click OK.

Since all the points roughly lie on a straight line, we can assume that the paired differences are from a normal population. Therefore, the assumptions for a paired *t* test are satisfied.

- (a) Test at the 1% significance level whether the diet program is effective in reducing weight.
 - 1. Import the data. Data→Import data→from Excel file pair_diet.xlxs (name it "diet")
 - 2. Statistics→Means→Paired t-Test...
 - 3. In the "**Paired t-Test**" window, select "**Before**" as the First variable and "**After**" as the second variable, since we define the paired difference as Before-After.
 - 4. Click "**Options**", in the "**Options**" window, choose "**Difference>0**" as the **Alternative Hypothesis**. Type **0.99** in the box under "**Confidence Level**". Click OK.
 - 5. Click OK

Paired t-Test	Data Options
Data Costions	Alternative Hypothesis Confidence Level
First variable (pick one) Second variable (pick one)	© Two-sided 99
After After	Difference < 0
Before	Difference > 0

Paired t-test

```
data: Before and After
t = 3.3648, df = 10, p-value = 0.003592
alternative hypothesis: true difference in means is greater than 0
99 percent confidence interval:
3.410302 Inf
sample estimates:
mean of the differences
19.09091
```

Steps:

- Hypotheses. $H_0: \mu_B \mu_A \leq \mathbf{0}$ versus $H_a: \mu_B \mu_A > 0$.
- The significance level is $\alpha = 0.01$.
- Compute the value of the test statistic: $t_o = \frac{\bar{a} \delta_0}{\frac{s_d}{\sqrt{n}}} = 3.3648$, with degrees of freedom $df = \frac{1}{\sqrt{n}}$
 - n 1 = 11 1 = 10.
- The P-value= $P(t \ge t_o) = P(t \ge 3.3648) = 0.003592.$
- Since P-value= $0.003592 < 0.01 (\alpha)$, reject H_0 .
- Conclusion: At the 1% significance level, the data provide sufficient evidence that the diet program is effective in reducing weight.
- (b) Obtain a confidence interval corresponding to the test in part (a).

For a right-tailed test at significance level $\alpha = 0.01$, the corresponding confidence interval should be a 99% upper-tailed interval, which is $(3.410302, \infty)$ from the computer output.

- (c) Does the interval in part (b) support the conclusion in part (a)? Yes. In part (a), we reject H_0 and claim that $\mu_B - \mu_A > 0$. In part (b), since the interval does not contain $\delta_0 = 0$ and the entire interval is above 0, we can claim that $\mu_B - \mu_A > 0$ with 99% confidence, which supports the results obtained in part (b).
- (d) Is it possible to claim that on average the diet program can reduce more than 5 pounds? Explain why. Here we will test $H_0: \mu_B - \mu_A \leq \underbrace{5}_{\delta_0=5}$ versus $H_a: \mu_B - \mu_A > 5$. Then $\delta_0 = 5$ in this question. The answer is "No", since $\delta_0 = 5$ is within the interval (3.410302, ∞). Therefore, we cannot reject $H_0: \mu_B - \mu_A \leq \underbrace{5}_{\delta_0=5}$ and claim that on average the diet program can reduce weight by more than 5

pounds.

LAB 7 INFERENCES FOR POPULATION PROPORTIONS

In this lab, we focus on inferences for another population parameter: the population proportion p. The population proportion is defined as the proportion (or percentage) of a population that have a specified attribute. For example, proportion of times that athletes wearing blue uniforms win the Judo games; proportion of customers who respond to the advertisement; proportion of women who suffer arthritis.

7.1 ONE-PROPORTION Z TEST & Z INTERVAL BASED ON ONE SAMPLE

Assumptions:

- 1. A simple random sample
- 2. Both np_0 and $n(1-p_0)$ are at least 5.

Steps:

1. Set up the hypotheses:

$H_0: p = p_0$	$H_0: p \leq p_0$	$H_0: p \ge p_0$
$H_a: p \neq p_0$	$H_a: p > p_0$	$H_a: p < p_0$

2. State the significance level α .

3. Compute the test statistic: $z_o = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$ with $\hat{p} = \frac{x}{n}$ where x is the total successes in n

observations.

4. Find the P-value or rejection region:

	$H_0: p = p_0$	$H_0: p \le p_0$	$H_0: p \ge p_0$
	$H_a: p \neq p_0$	$H_a: p > p_0$	$H_a: p < p_0$
P-value	$2P(Z \ge z_o)$	$P(Z \ge z_o)$	$P(Z \le z_o)$
Rejection region	$Z \ge z_{\alpha/2}$ or $Z \le -z_{\alpha/2}$	$Z \ge z_{\alpha}$	$Z \leq -z_{\alpha}$

5. Reject the null H_0 if P-value $\leq \alpha$ or z_o falls in the rejection region.

6. Conclusions.

A point estimate for the population proportion p is the sample proportion $\hat{p} = \frac{x}{n}$. A $(1 - \alpha) \times 100\%$ confidence interval corresponding to a hypothesis test at the significance level α for the population proportion p are as shown in the table.

	$H_0: p = p_0$	$H_0: p \le p_0$	$H_0: p \ge p_0$
	$H_a: p \neq p_0$	$H_a: p > p_0$	$H_a: p < p_0$
$(1 - \alpha) \times 100\%$ CI	$\hat{p} \pm \frac{z_{\alpha}}{2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$(\hat{p}-z_{\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\infty)$	$(-\infty, \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$
Decision	Reject <i>H</i>	I_0 if p_0 is outside the interval	al

Example: One-Proportion z Test and z Interval

Revisit the data set about the effect of attending lecture on grades. There are two sections: ASO2 and ASO4. Some students attend lectures regularly and some do not in both sections. We are interested in the attendance rate.

AS02	Attend	AS02	Attend	AS02	Attend	AS04	Attend	AS04	Attend
AS02	Non-Attend	AS02	Non-Attend	AS02	Non-Attend	AS04	Attend	AS04	Non-Attend
AS02	Attend	AS02	Attend	AS02	Attend	AS04	Attend	AS04	Attend
AS02	Attend	AS02	Attend	AS02	Attend	AS04	Attend	AS04	Non-Attend
AS02	Non-Attend	AS02	Attend	AS02	Attend	AS04	Non-Attend	AS04	Attend
AS02	Attend	AS02	Attend	AS02	Attend	AS04	Non-Attend	AS04	Attend
AS02	Attend	AS02	Attend	AS02	Attend	AS04	Attend	AS04	Non-Attend
AS02	Non-Attend	AS02	Attend	AS02	Attend	AS04	Non-Attend	AS04	Attend
AS02	Attend	AS02	Non-Attend	AS02	Attend	AS04	Non-Attend	AS04	Attend
AS02	Attend	AS02	Non-Attend	AS02	Attend	AS04	Attend	AS04	Attend
AS02	Attend	AS02	Non-Attend	AS02	Attend	AS04	Attend	AS04	Non-Attend
AS02	Attend	AS02	Non-Attend	AS02	Non-Attend	AS04	Non-Attend	AS04	Non-Attend
AS02	Attend	AS02	Attend	AS04	Attend	AS04	Attend	AS04	Attend
AS02	Attend	AS02	Attend	AS04	Attend	AS04	Non-Attend	AS04	Attend
AS02	Attend	AS02	Attend	AS04	Attend	AS04	Attend	AS04	Attend
AS02	Non-Attend	AS02	Attend	AS04	Attend	AS04	Attend	AS04	Non-Attend
AS02	Attend	AS02	Non-Attend	AS04	Non-Attend	AS04	Non-Attend	AS04	Non-Attend

Download attend_grade.xlsx from online. Import data ("attend_grade.xlsx") into R commander:

Data→Import data→from Excel file... (name it "Attend")

The data set consists of eight variables (columns) and 85 instances (rows). The variable "Section" indicating whether the student is in AS02 or AS04, "Attend" indicating whether the student attends lectures regularly or not; "Midterm", "Homework", "LabA", "Labexam", "Finalexam", "Grade" are the student's grades in midterm exam, homework assignments, lab assignments, lab exam, final exam, and the final grade.

R Commander	R Attend						105231	Test Inc.
ile Edit <mark>Data</mark> Statistics Graphs Models Distri	Section	Attend	Midterm	Homework	LabA	Labexam	Finalexam	Grade
Transact Secol Data Cot	1 AS02	Attend	48.39	13.79	14.28	7.81	62.00	69.68
Composition of a deal	AS02	Non-Attend	45.16	B.17	11.23	8.12	64.00	61.21
Enter name of data set Attend	3 AS02	Attend	72.58	14.15	15.13	7.81	72.00	80.43
The state of the second state of the state o	4 AS02	Attend	70.97	14.13	14.13	9.06	74.00	80.9
(v) variable names in first row of spreadsheet	5 AS02	Non-Attend	64.52	11.66	11.62	3.12	52.00	60.74
Row names in first column of spreadsheet	6 AS02	Attend	75.81	14.04	14.57	8.12	79.00	83.34
Convert character data to factors	7 AS02	Attend	75.81	10.62	13.49	9.38	56.00	72.03
Missing data indicator: <empty cell=""></empty>	B AS02	Non-Attend	53.23	12.46	14.39	10.00	77.00	77.11
	9 AS02	Attend	70.97	13.07	13.96	6.56	69.00	75.49
🔞 Help 🚽 OK 🐹 Cancel	10 AS02	Attend	79.03	12.19	15.51	9.38	52.00	75.03

(a) What is the overall attendance rate in the two sections?

- 1. Statistics→Summaries→Frequency Distributions
- 2. In the "Frequency Distributions" window, choose "Attend" as the variable. Click OK.

R R Commander	counts:
File Edit Data Statistics Graphs Models Distributions Tools Help	Attend
R Frequency Distributions	Attend Non-Attend
Variables (pick one or more)	58 27
Section	percentages: Attend
Chi-square goodness-of-fit test (for one variable only)	Attend Non-Attend 68.24 31.76

There are 58+27=85 students altogether in both sections and 58 students attend lectures regularly. Therefore, the overall attendance rate is 58/85=0.6824 which is 68.24%.

(b) Test at the 5% significance level whether the overall attendance rate is **below** 80%.

- 1. Statistics→Proportions→Single-sample proportion test...
- 2. In the "Single-Sample Proportion Test" window, choose "Attend" as the variable.
- 3. Click "Options". In the "Options" window, choose "Population proportion<p0" as the Alternative Hypothesis. Specify the hypothesized value "p=0.8" under the "Null hypothesis". That is $p_0 = 0.8$. Type 0.95 in the box under "Confidence Level". Under "Type of Test", check "Normal approximation". Click OK.
- 4. Click OK.

R Commander	R Single-Sample Proportion Test
File Edit Data Statello Graphs Models Olitzibutions Tools Help	Data Options
Data Option Variable (pick one) Attend Section	Alternative Hypothesis Null hypothesis: p = .8 Population proportion 1= p0 Confidence Level: .95 Population proportion > p0 Confidence Level: .95 Population proportion > p0 Type of Test Normal approximation Normal approximation Exact binomial Exact binomial
🚯 Help 🥱 Reset 🖌 OK 💥 Cancel 🎓 Apply	🕲 Help 🔥 Reset 🚽 OK 🗱 Cancel 🎓 Apply

Steps:

- Hypotheses. $H_0: p \ge 0.8$ versus $H_a: p < 0.8$.
- The significance level is $\alpha = 0.05$.
- Compute the value of the test statistic: z₀ = -√7.3529 = -2.71162.
 Note: the computer output provides the chi-square score 7.3529 which is the square of the observed test statistic z₀.

The observed test statistic z_o . We can double check that the test statistic $z_o = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{\frac{58}{85} - 0.8}{\sqrt{\frac{0.8(1 - 0.8)}{85}}} = -2.71163.$

Note that $z_o^2 = (-2.71163)^2 = 7.3529$ which is the chi-square score.

- The P-value= $P(Z \le z_o) = P(Z \le -2.7116) = 0.003348$
- Since P-value= $0.003348 < 0.05 (\alpha)$, reject H_0 .
- Conclusion: At 5% significance level, the data provide sufficient evidence that overall attendance rate is below 80%.
- (c) Obtain a confidence interval corresponding to the test in part (b).
 For a left-tailed test at the 5% significance level, the corresponding interval should be a 95% lower-tailed interval, which is (0, 0.7586904) obtained from the computer output.
 Interpretation: we can be 95% confident that the overall attendance rate is below 0.75869, i.e., 75.869%.
- (d) Does the interval in part (c) support the conclusion in part (b)?

Yes. In part (b), we reject H_0 and claim that p < 0.8. In part (c), since the interval does not contain $p_0 = 0.8$ and the entire interval is below 0.8, we can claim that p < 0.8 with 95% confidence, which supports the results obtained in part (c).

7.2 TWO-PROPORTION Z TEST & Z INTERVAL BASED ON TWO INDEPENDENT SAMPLES

For independent samples of size n_1 and n_2 from two populations, a point estimate for the difference between two population proportions $(p_1 - p_2)$ is the difference between the sample proportions $(\hat{p}_1 - \hat{p}_2)$ where $\hat{p}_1 = \frac{x_1}{n_1}$, $\hat{p}_2 = \frac{x_2}{n_2}$, and x1 and x2 are the number of successes in their samples.

7.2.1 Two-Proportion Z Interval Assumptions:

- 1. Both samples are simple random samples from their own populations.
- 2. The two samples are independent.
- 3. Large samples, all the number of successes and the number of failures x_1 , $n_1 x_1$, x_2 , and $n_2 x_2$ are at least 5.

A $(1 - \alpha) \times 100\%$ confidence interval for the difference between the population proportion $(p_1 - p_2)$ is:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}, \quad \hat{p}_1 = \frac{x_1}{n_1}, \hat{p}_2 = \frac{x_2}{n_2}$$

where $z_{\alpha/2}$ is the *z* score such that the area to its right is $\frac{\alpha}{2}$ under the standard normal curve. This is a two-tailed interval.

A $(1 - \alpha) \times 100\%$ upper-tail confidence interval is $((\hat{p}_1 - \hat{p}_2) - z_{\alpha} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}, \infty)$. And a $(1 - \alpha) \times 100\%$ lower-tail confidence interval is $(-\infty, (\hat{p}_1 - \hat{p}_2) + z_{\alpha} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}})$.

7.2.2 Two-Proportion Z Test

Assumptions:

- 1. Both samples are simple random samples from their own populations.
- 2. The two samples are independent.
- 3. Large samples, all the number of successes and the number of failures x_1 , $n_1 x_1$, x_2 , and $n_2 x_2$ are at least 5.

Steps to perform a two-proportion z test:

1. Set up the hypotheses:

$H_0: p_1 = p_2$	$H_0: p_1 \le p_2$	$H_0: p_1 \ge p_2$
$H_a: p_1 \neq p_2$	$H_a: p_1 > p_2$	$H_a: p_1 < p_2$

- 2. State the significance level α .
- 3. Compute the value of the test statistic:

$$z_o = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p (1 - \hat{p}_p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ with } \hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}, \hat{p}_1 = \frac{x_1}{n_1}, \hat{p}_2 = \frac{x_2}{n_2}$$

4. Find the P-value **or** rejection region:

	$H_0: p_1 = p_2$	$H_0: p_1 \le p_2$	$H_0: p_1 \ge p_2$
	$H_a: p_1 \neq p_2$	$H_a: p_1 > p_2$	$H_a: p_1 < p_2$
P-value	$2P(Z \ge z_o)$	$P(Z \ge z_o)$	$P(Z \le z_o)$
Rejection region	$Z \ge z_{\alpha/2}$ or $Z \le -z_{\alpha/2}$	$Z \ge z_{\alpha}$	$Z \leq -z_{\alpha}$

- 5. Reject the null H_0 if P-value $\leq \alpha$ or z_o falls in the rejection region.
- 6. Conclusions.

Example: Two-Proportion Z Test and Z Interval

Revisit the data set attend_grade.xlsx (which you imported into R in the previous section) about the effect of attending lecture on grades. There are two sections: AS02 and AS04. Some students attend lectures regularly and some do not in both sections. We are interested in the attendance rate.

(a) What are the attendance rates in sections AS02 and AS04 respectively?

1. Statistics→Contingency tables→Two-way table...

2. In the "Two-Way Table" window, choose "Section" as the row variable and "Attend" as the column variable.

3. Check "Statistics". In the "Statistics" window, select "Row percentage" under "Compute Percentages". Click OK.

4. Click OK.

Note that we chose "Section" as the row variable and we want the percentage of attendees within each section; therefore, we need to calculate the row percentages.

R Commander	R Two-Way Table
le Edit Data Statistica Graphs Modele Distributions Tools Help	Contraction
🗙 Two-Way Table 👘 👘 👘 👘 👘	Data Statistics
Data thereas	Compute Percentages
Barrana (and and and and and and and and	Row percentages
Attend	Column percentages
Section I	Percentages of total
The second se	No percentages
call unlich careers	Hypothesis Tests
1 1	Chi-square test of independence
	Components of chi-square statistic
	Print expected frequencies
	E Fisher's exact test
	🔞 Help 🔥 Reset 🚽 OK 🗱 Cancel 🥐 Appl
😳 Help 👘 Reset 😽 OK 🕺 K Cancel 🥐 Apply	

Frequency table:			
Attend			The attendance rate in ASO2 is
Section Attend Non	-Attend		$r_{1} = 34$
AS02 34	12		$\hat{p}_1 = \frac{x_1}{n} = \frac{34}{46} = 0.7391$ which is 73.91%.
AS04 24	15		<i>n</i> ₁ +0
			The attendance rate in AS04 is
Row percentages:			x_2 24 x_4 x_5 x_4
Attend			$\hat{p}_1 = \frac{\pi}{n_2} = \frac{\pi}{39} = 0.6154$ which is 61.54%.
Section Attend Non	-Attend Total	Count	112 37
AS02 73.9	26.1 100) 46	
AS04 <u>6</u> 1.5	38.5 100) 39	

- (b) Test at the 1% significance level whether the attendance rates are **different** in both sections.
 - 1. Statistics → Proportions → Two-sample proportion test...
 - In the "Two-Sample Proportion Test" window, choose "Section" as the row variable and "Attend" as the column variable. Click "Options". In the "Options" window, choose "Two Sided" as the Alternative Hypothesis. Type 0.99 in the box under "Confidence Level". Under "Type of Test", check "Normal approximation". Click OK.
 - 3. Click OK.

a s commander	R Two-Sample Proportions Test
File Edit Data Statistics Graphs Models Distributions Tools Help	
Two-Sample Proportions Test	Data Options
Data Options Groups (pick one) Response Variable (pick one) Attend Section Section	Difference: AS02 - AS04 Alternative Hypothesis Two-sided Difference < 0

2-sample test for equality of proportions without continuity correction

```
data: .Table
X-squared = 1.4911, df = 1, p-value = 0.222
alternative hypothesis: two.sided
99 percent confidence interval:
    -0.1371712   0.3846628
sample estimates:
    prop 1     prop 2
0.7391304   0.6153846
```

Steps:

- Hypotheses. $H_0: p_1 = p_2$ versus $H_a: p_1 \neq p_2$, where p_1 is the attendance rate of section ASO2 and p_2 is the attendance rate of section ASO4.
- The significance level is $\alpha = 0.01$.
- Compute the value of the test statistic: $z_o = \sqrt{1.4911} = 1.2211$. Note: the computer output provides the chi-square score 1.4911 which is the square of the observed test statistic z_o .

We can double check that the test statistic:

$$z_o = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p (1 - \hat{p}_p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{0.7391304 - 0.6153846}{\sqrt{0.682353(1 - 0.682353)} \sqrt{\frac{1}{46} + \frac{1}{39}}} = 1.2211, \text{ with}$$
$$\hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2} = \frac{34 + 24}{46 + 39} = 0.682353, \hat{p}_1 = \frac{x_1}{n_1} = \frac{34}{46} = 0.7391304, \hat{p}_2 = \frac{x_2}{n_2} = \frac{24}{39} = 0.6153846.$$

- The P-value= $2P(Z \ge |z_0|) = 2P(Z \ge 1.2211) = 0.222$.
- Since P-value= $0.222 > 0.01 (\alpha)$, we cannot reject H_0 .
- Conclusion: At the 1% significance level, the data do not provide sufficient evidence that the attendance rates are different in both sections.
- (c) Obtain a confidence interval corresponding to the test in part (b). For a two-tailed test at 1% significance level, the corresponding interval is a 99% two-sided interval for $p_1 - p_2$ which is (-0.1371712, 0.3846628) based on the computer output.

Interpretation: We can be 99% confident that $p_1 - p_2$ is somewhere between -0.1372 and 0.3847. That means, we can be 99% confident that the attendance rate of ASO2 is between 13.72% lower to 38.47% higher than that of ASO4.

We can double check that a 99% confidence for p_1-p_2 is

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} = (0.7391304 - 0.6153846) \pm 2.575 \sqrt{\frac{0.7391304(1 - 0.7391304)}{46} + \frac{0.6153846(1 - 0.6153846)}{39}} = (-0.1370872, 0.3845788)$$

This is a little bit off due to rounding.

(d) Does the interval in part (c) support the conclusion in part (b)?

Yes. In part (b), we cannot reject H_0 and claim that the two attendance rates are significantly different. In part (c), since the interval contains 0, there is no significant difference between the attendance rates in both sections.

LAB 8 CHI-SQUARE TESTS

Lab 7 covers z test and z interval for one and two proportions. Chi-square tests should be used when more than two proportions are compared.

8.1 CHI-SQUARE GOODNESS-OF FIT TEST FOR ONE CATEGORICAL OR DISCRETE VARIABLE

The chi-square goodness-of-fit test can be applied to a categorical variable or a discrete quantitative variable that has only finitely possible values. The objective of a chi-square goodness-of-fit test is to test whether the variable follows the probability distribution specified in the null hypothesis H_0 .

Assumptions:

- 1. All expected frequencies are at least 1.
- 2. At most 20% of the expected frequencies are less than 5.
- 3. Simple random sample (if you need to generalize the conclusion to a larger population)

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in those cells larger.

Before running a chi-square goodness-of-fit test, we should first check the assumptions. Calculate the expected frequency for each possible value of the variable using E = np, where n is the total number of observations and p is the relative frequency (or probability) specified in the null hypothesis. Check whether the expected frequencies satisfy assumptions 1 and 2. If not, consider combining some cells.

Steps to perform a chi-square goodness-of-fit test:

1. Set up the hypotheses:

 H_0 : The variable has the specified distribution H_a : The variable does not have the specified distribution

- 2. State the significance level α .
- 3. Compute the value of the test statistic: $\chi_o^2 = \sum_{\text{all cells}} \frac{(O-E)^2}{E}$ with df = k 1.
- 4. Find the P-value **or** rejection region based on the χ^2 curve with df = k 1.

P-value	$P(\chi^2 \ge \chi_o^2)$	the area to the right of χ^2_o under the curve
Rejection region	$\chi^2 \ge \chi^2_{\alpha}$	the region to the right of χ^2_{α} , the area is α

- 5. Reject the null H_0 if P-value $\leq \alpha$ or χ_0^2 falls in the rejection region.
- 6. Conclusions.

Example: Chi-square goodness-of-fit test

According to the results of the Federal election in 2015, 31.9% of votes supported Conservative, 39.5% supported Liberal, 19.7% supported New Democratic (NDP), 4.7% supported Bloc Québécois, and 3.4% supported Green (data from Wikipedia).

Federal proportions are summarized in this table.

Parties	Conservative	Green	Liberal	NDP	Bloc Québécois	Others
Proportion (p)	0.319	0.034	0.395	0.197	0.047	0.008

Thirty-seven students who voted in my Stat151 class responded to the online survey and their vote counts are summarized in the following table:

Parties	Conservative	Green	Liberal	NDP	Bloc Québécois	Others
Counts	9	2	17	6	0	3

Test at the 5% significance level whether the class has a different preference pattern from the whole nation (2015 election).

We check the assumptions. The expected frequencies (counts $E = np = 37 \times p$) for the outcome cells when n = 37 are:

Parties	Conservative	Green	Liberal	NDP	Bloc Québécois	Others
Proportion (p)	0.319	0.034	0.395	0.197	0.047	0.008
Expected Counts	11.803	1.258	14.615	7.289	1.739	0.296

Here we have one outcome cell with an expected count below 1, which violates an assumption. Furthermore, with k = 6 outcome cells, we wish to assume at most $6 \times 0.2 = 1.2$ cells with expected counts less than 5, and we have three cells less than 5. Also, our survey was taken in Alberta and no Bloc Québécois run in Alberta (although a student with a home riding of Quebec might have still voted that way).

We would like to do a test, so we need to combine some cells. Federally, we combine the cells "Green", "Bloc Québécois" and "Others" above and name the combined party "Others". In our sample data set, we also merge "Green" and "Others" and name the combined party "Others". This will lead us to have k = 4 outcomes for our federal population and k = 4 cell outcomes for our survey sample data, as follows.

As a result, the expected and observed frequencies are summarized as follows:

Parties	Proportion <i>p</i>	Observed (0)	Expected (E)
			$E = np = 37 \times p$
Conservative	0.319	9	$37 \times 0.319 = 11.803$
Liberal	0.395	17	$37 \times 0.395 = 14.615$
NDP	0.197	6	$37 \times 0.197 = 7.289$
Others	0.089 = 0.034 + 0.047 + 0.008	2+3=5	$37 \times 0.089 = 3.293$
	Sum=1	Sum=37	Sum=37

Now we have no cells with an expected count below 1, and 1 cell with an expected count below 5. So, we actually have 25% of our cells with an expected value below 5, which exceeds the assumption requirement that no more than 20% of our cells have an expected value below 5, but it is close, and we proceed for educational purposes.

The file "survey.xlxs" contains our sample data from the students. A column called "MergedParty" contains the data of interest (where the Green and Other cells have been renamed to "Others").

We import the data ("survey.xlsx") into R commander and perform the test:

Data→Import data→from Excel file... (name it "Survey")

Use R commander to run the chi-square goodness-of-fit test.

- 1. Statistics→Summaries→Frequency distributions...
- 2. In the "Frequency Distributions" window, choose "Merged.Party" as the variable. Check "Chisquare goodness-of-fit test (for one variable only)". Click OK.
- 3. In the "**Goodness-of-Fit Test**" window, specify the hypothesized proportions: 0.319 for Conservative, 0.395 for Liberal, 0.197 for NDP, and 0.089 for Others. Click OK.

And the second		RR	Commander	
Edit Data Statistics Graph	s Models Distributions Tools	Help	Edit Data Statistics	Graphs Models Distributions
requency Distributions	And Address of Concession, or C	The	Lun Data <mark>Statistics</mark>	orapits models ensurbations
Nables (pick one of more)		R	Goodness-of-Fit Test	Alternatives and
rged Party		Fa	ctor levels:	Conservative Liberal NDP Ot
rty		Hy	pothesized probabilitie	s: 0.319 0.395 0.197 0.0
Chi cousto acordones of fit to	et (for one variable celu)			
Chirsquare goodness-or-in in	st (for one variable only)		🧹 OK 🛛 💥 Car	ncel
🕲 Help 📏 Reset	OK X Cancel	P Apply		
counts:				
MergedParties				
Conservative	Liberal	NDP	Others	
9	17	6	5	
percentages:				
MergedParties				
Conservative	Liberal	NDP	Others	
24.32	45.95	16.22	13.51	
Chi-s	quared test for	given probabi	lities	
Chi-s	quared test for	given probabi	lities	

Steps to perform a chi-square goodness-of-fit test:

1. Set up the hypotheses:

 H_0 : $p_C = 0.319$, $p_L = 0.395$, $p_{NDP} = 0.197$, $p_{Others} = 0.089$ H_a : At least one proportion is different the ones specified under H_0

- 2. The significance level is $\alpha = 0.05$.
- 3. The test statistic: $\chi_o^2 = \sum_{\text{all cells}} \frac{(O-E)^2}{E} = 2.1677$, with df = k 1 = 4 1 = 3.

- 4. Find the P-value. Chi-square tests are always right tail.
 - P-value= $P(\chi^2 \ge \chi_0^2) = P(\chi^2 \ge 2.1677) = 0.5383.$
- 5. Decision: We do not reject the null H_0 since P-value= $0.5383 > 0.05(\alpha)$.
- 6. Conclusion: At the 5% significance level, we do not have sufficient evidence that the class has a different preference pattern from the whole nation (2015 election).

Another way to conduct a chi-square goodness-of-fit without the data is to type commands in the R Script window. We first need to let R commander know the proportions under the null and the observed counts.

- 1. Type pvec=c(0.319,0.395,0.197,0.089) in the R Script Window, click "Submit".
- 2. Type cvec=c(9,17,6,5) in the R Script Window, click "Submit".
- 3. Type chisq.test(cvec,p=pvec) in the R Script Window, click "Submit".

Note: for each line of the commands, put the mouse at the end of each line and click "**Submit**" to execute the command.

Computer output: we get the chi-square score is 2.1677, df=3, and p-value=0.5383, the same as the results obtained before in which we use the data.

8.2 CHI-SQUARE INDEPENDENCE TEST

The chi-square independence test is used to test whether two categorical variables of a population are related (associated) or independent.

Assumptions:

- 1. All expected frequencies are at least 1.
- 2. At most 20% of the expected frequencies are less than 5.
- 3. Simple random sample (if you need to generalize the conclusion to a larger population)

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in those cells larger.

Before conducting a chi-square independence test, we first check the assumptions. Calculate the expected frequency for each possible value of the variable using $E = \frac{(rth row total) \times (cth column total)}{n}$, where n is the total number of observations. Check whether the expected frequencies satisfy assumptions 1 and 2. If not, consider combining some cells.

Steps to perform a chi-square independence test:

1. Set up the hypotheses:

 H_0 : The two variables are independent H_a : The two variables are **a**ssociated

- 2. State the significance level α .
- 3. Compute the value of the test statistic: $\chi_o^2 = \sum_{\text{all cells}} \frac{(o-E)^2}{E}$ with $df = (r-1) \times (c-1)$, where $E = \frac{(rth \text{ row total}) \times (cth \text{ column total})}{c}$, r is the number of rows and c is number of columns of the cells.
- 4. Find the P-value **or** rejection region based on the χ^2 curve with $df = (r-1) \times (c-1)$.

P-value	$P(\chi^2 \ge \chi_o^2)$	the area to the right of χ^2_o under the curve
Rejection region	$\chi^2 \ge \chi^2_{\alpha}$	the region to the right of χ^2_{lpha} , the area is $lpha$

5. Reject the null H_0 if P-value $\leq \alpha$ or χ_0^2 falls in the rejection region.

6. Conclusions.

Example: Chi-square Independence Test

Note: Data set is the Focus database described on Page 34, Introductory Statistics, 10th Edition (2016), by Neil A. Weiss, Pearson.

The Focus database contains information of a sample of 200 undergraduate students at the University of Wisconsin-Eau Claire. It has 13 variables including Sex, School/College, Classification (freshman, sophomore, junior, senior), ACT English Score, ACT math Score, ACT composite Score, and etc.

Test at the 5% significance level whether "Sex" and "College" are associated.

Download focus.xlsx from online and import the data into R commander:

Data→Import data→from Excel file... (name it "focus")

Use R-commander to run the chi-square goodness-of-fit test.

- 1. Statistics→Contingency tables→Two-way table...
- 2. In the "**Two-Way Table**" window, choose "**SEX**" as the row variable and "**COLLEGE**" as the column variable.
- 3. In the **Statistics** window of the "Two-Way Table" window, check **"Print Expected Frequencies"** and **"Components of chi-square statistic".**
- 4. Click OK.

R R Commander	Computer Output:
R Two-Way Table Column variable (pick one) Data Statistics Column variable (pick one) CLASS Column variable (pick one) CASS Column variable (pick one) CLASS Column variable (pick one) Subset expression TYPE	Frequency table: COLLEGE SEX A&S Bus Educ Hss Nurs F 50 21 26 12 9 M 47 25 6 4 0 Pearson's Chi-squared test data: Table
<all cases="" valid=""></all>	X-squared = 20.112, df = 4, p-value = 0.0004746
🕲 Help 🦘 Reset 🕜 OK 🗱 Cancel	Expected counts: COLLEGE SEX A&S Bus Educ Hss Nurs F 57.23 27.14 18.88 9.44 5.31 M 39.77 18.86 13.12 6.56 3.69 Chi-square components: COLLEGE SEX A&S Bus Educ Hss Nurs F 0.91 1.39 2.69 0.69 2.56 M 1.31 2.00 3.86 1.00 3.69 Messages [26] WARNING: 1 expected frequencies are less than 5

Steps to perform a chi-square independence test:

1. Set up the hypotheses:

 H_0 : The two variables are independent H_a : The two variables are **a**ssociated

- 2. The significance level is $\alpha = 0.05$.
- 3. The test statistic: $\chi_o^2 = \sum_{\text{all cells}} \frac{(O-E)^2}{E} = 20.112$,

with $df = (r - 1) \times (c - 1) = (2 - 1) \times (5 - 1) = 4$.

- 4. Find the P-value. Chi-square tests are always right tail. P-value= $P(\chi^2 \ge \chi_o^2) = P(\chi^2 \ge 20.112) = 0.0004746$.
- 5. Decision: We do not reject the null H_0 since P-value = $0.0004746 < 0.05(\alpha)$.
- 6. Conclusion: At the 5% significance level, we have sufficient evidence that "Sex" and "College" are associated, i.e., female and male students have significantly difference preference in choosing school/college.

Notice that all the expected cell values are above 1, so this assumption holds. Notice also the warning that the expected frequency for the Male and Nursing cell is below 5, but only 10% (one out of ten) of our expected cell frequencies are below 5, so this assumption holds.

The fact that there are no observations in the Male and Nursing Cell is of note. An examination of the components of the chi-square test statistic does indicate that more females than expected were in nursing and less males than expected were in nursing. We also note that less females than expected were in education and more males than expected were in education. These four cells made the largest contributions towards obtaining a test statistic value that was large and led us to a significant result.

LAB 9 SIMPLE LINEAR REGRESSION

This lab covers when and how we could model the relationship between two quantitative variables using a straight line, which is called a simple linear regression model; and how to conduct a hypothesis test and obtain a confidence interval for the slope of the regression model.

The following table and scatter plot show the relationship between the price (in \$1000) and the age (in years) of 15 used cars of a particular make and model. Download the dataset car.xls from online and then import it into R commander.

Example: Simple Linear Regression Model

(a) Import the data into R commander and re-produce the scatter plot. Could we use a straight line $\hat{y} = b_0 + b_1 x$ to model relationship between price and age of the used cars?

Data→Import data→from Excel file... (name it "car")

Draw the scatter plot:

- 1. Graphs→Scatterplot...
- 2. In the "Scatterplot" window, select "age" as x-variable and "price" as y-variable.
- 3. Click OK.

Note: The price is calculated as the original price divided by 1000.

Since all the data points are roughly on a straight line, we can use a straight line $\hat{y} = b_0 + b_1 x$ to model relationship between price and age of the used cars.

R Commander		7 -	0							
File Edit Data Statistics Graphs Models Distributions To			0	0						
R Scatterplot		- 1								_
Data Options		₽ -			0	2				
x-variable (pick one)	price	8 -			0	,	0			
original.price original.price original.price		9 –				0	٥	0		
Plot by groups		4 -							0	
					_	_				0
Subset expression				2	4	6		8	10	12
<all cases="" valid=""></all>							age			

(b) Write down the least-squares regression equation.

Fit a regression model and obtain the least squares straight line:

- 1. Statistics → Fit models → Linear regression...
- 2. In the "Linear Regression", select "price" as the Response variable (dependent variable) and "age" as the Explanatory variable (independent variable).

e Edit Data <mark>Statist</mark>	cs Gra	phs Models Distributions Tools Help
R Linear Regression	1.0	int data and [] from data and No. of
Enter name for model:	RegMo	odel.1
Response variable (pic	k one)	Explanatory variables (pick one or more)
age original.price	^	original.price
price	-	price -
Subset expression		
1 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1		
<all cases="" valid=""></all>		

3. Click OK.

The values of the intercept b_0 and the slope b_1 are given in the "**Estimate**" column. Based on the computer outputs, we have $b_0 = 14.28595$ and $b_1 = -0.95905$, and the fitted least-squares regression equation is

$$\hat{y} = b_0 + b_1 x \implies \hat{\text{price}} = 14.28595 + (-0.95905) \times \text{age} = 14.28595 - 0.95905 \times \text{age}$$

```
Call:
lm(formula = price ~ age, data = Car)
Residuals:
    Min
              1Q
                  Median
                                30
                                        Max
-1.53267 -0.55715 0.04524 0.33140 1.59019
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                               31.84 1.01e-13 ***
(Intercept) 14.28595 0.44867
           -0.95905
                      0.06458 -14.85 1.56e-09 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8162 on 13 degrees of freedom
Multiple R-squared: 0.9443, Adjusted R-squared: 0.9401
F-statistic: 220.5 on 1 and 13 DF, p-value: 1.562e-09
```

- (c) Obtain and interpret the coefficient of determination r^2 . Based on the computer outputs, the coefficient of determination $r^2 = 0.9443$. Interpretation: 94.43% of variation in the observed price of the used cars is due to the age of the used cars and can be explained by the fitted regression equation $\widehat{\text{price}} = 14.28595 - 0.95905 \times \text{age}$.
- (d) Obtain and interpret the correlation coefficient r. Since the correlation coefficient r and the slope b_1 have the same sign, and $b_1 = -0.95905$ which is negative, $r = -\sqrt{r^2} = -\sqrt{0.9443} = -0.9718$. Interpretation: There is a strong, negative, linear association between price and age of the used cars.
- (e) Test at the 5% significance level whether age is a **useful predictor** for the price of a used car.

Steps:

- 1. Set up the hypotheses. $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.
- 2. The significance level is $\alpha = 0.05$.
- 3. Compute the value of the test statistic: $t_o = \frac{b_1}{\frac{s_e}{\sqrt{S_{YY}}}} = -14.85$ with df = n 2 = 13.
- 4. Find the P-value. For a two tailed test with df = 13, P-value= $2P(t \ge |t_o|) = 2P(t \ge 14.158) = 1.56 \times 10^{-9}$.
- 5. Decision: reject the null H_0 since P-value= $1.56 \times 10^{-9} < 0.05(\alpha)$.
- 6. Conclusion: At the 5% significance level, we have sufficient evidence that age is a useful predictor for the price of a used car.

LAB 10 ONE-WAY ANOVA

The two-sample t test can be used in comparing two population means based on two independent samples.

When comparing k (k > 2) population means based on k independent samples, a one-way ANOVA can be used. ANOVA stands for **AN**alysis **O**f **VA**riance. This lab shows how to conduct a one-way ANOVA F test based on the computer output.

Let $\mu_1, \mu_2, \dots, \mu_k$ be the population means of the k populations, respectively.

The hypotheses of one-way ANOVA are formulated as

• H_0 : all means are equal, i.e., $\mu_1 = \mu_2 = \cdots = \mu_k$

• H_a : not all the means are equal.

In a two-sample t test, inference about the population means is based on two independent samples from two populations. In the ANOVA F test, inference about population means is based on k independent simple random samples from k populations.

If $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ is true, the sample means $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k$ should be close to one another and hence the variation between sample means should be small. We should reject $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ if the sample means $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k$ are very different.

Assumptions for One-way ANOVA F Test:

- Normal populations: for each population, the variable of interest is normally distributed.
- Equal variances: the variances of the variable of interest are the same for all populations.
- Independent samples: the samples from different populations are independent of one another.

• Simple random samples: the samples taken from the *k* populations should be simple random samples.

Steps:

1. Set up the hypotheses:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_a:$ Not all means are equal

- 2. State the significance level α .
- 3. Calculate the sums of squares SST, SSTR, SSE and the mean squares MSTR, MSE. Find the test statistic, F_o , and show the results in an ANOVA table:

Source	df	SS	$MS = \frac{SS}{df}$	F-statistic	p-value
Treatment	<i>k</i> – 1	SSTR	$MSTR = \frac{SSTR}{k-1}$	$F_o = \frac{MSTR}{MSE}$	$P(F \ge F_o)$
Error	n-k	SSE	$MSE = \frac{SSE}{n-k}$		
Total	n-1	SST			

4. Find the P-value **or** rejection region based on the F density curve with degrees of freedom $df_{numerator} = df_n = k - 1$, $df_{denominator} = df_d = n - k$.

P-value	$P(F \ge F_o)$	the area to the right of F_o under the curve
Rejection region	$F \geq F_{\alpha}$	the region to the right of the critical value F_{lpha}

5. Reject the null H_0 if P-value $\leq \alpha$ or F_o falls in the rejection region.

6. Conclusions.

Example: One-way ANOVA F Test

A student performed an experiment to compare download speed at different times of the day. He placed a file on a remote server and then proceeded to download the file at three different time periods of the day: 7 a.m., 5 p.m., and 12 a.m. He downloaded the file 48 times, 16 times at each time period, and recorded the download time in seconds (De Veaux, Velleman, & Bock, 2008). Does the data below provide sufficient evidence that there is a difference between the mean download times at 7 a.m., 5 p.m., and 12 a.m.? Test at the 1 % significance level. The data can be found online in the Excel file downloading.xlsx.

Time of Day	Time (Sec)	Time of Day	Time (Sec)	Time of Day	Time (Sec)
Early (7AM)	68	Evening (5 PM)	299	Late Night (12 AM)	216
Early (7AM)	138	Evening (5 PM)	367	Late Night (12 AM)	175
Early (7AM)	75	Evening (5 PM)	331	Late Night (12 AM)	274
Early (7AM)	186	Evening (5 PM)	257	Late Night (12 AM)	171
Early (7AM)	68	Evening (5 PM)	260	Late Night (12 AM)	187
Early (7AM)	217	Evening (5 PM)	269	Late Night (12 AM)	213
Early (7AM)	93	Evening (5 PM)	252	Late Night (12 AM)	221
Early (7AM)	90	Evening (5 PM)	200	Late Night (12 AM)	139

Early (7AM)	71	Evening (5 PM)	296	Late Night (12 AM)	226
Early (7AM)	154	Evening (5 PM)	204	Late Night (12 AM)	128
Early (7AM)	166	Evening (5 PM)	190	Late Night (12 AM)	236
Early (7AM)	130	Evening (5 PM)	240	Late Night (12 AM)	128
Early (7AM)	72	Evening (5 PM)	350	Late Night (12 AM)	217
Early (7AM)	81	Evening (5 PM)	256	Late Night (12 AM)	196
Early (7AM)	76	Evening (5 PM)	282	Late Night (12 AM)	201
Early (7AM)	129	Evening (5 PM)	320	Late Night (12 AM)	161

Import the data into R: Data -> Import data -> from Excel file... (name it "downloading")

Conduct the one-way ANOVA F test in R:

File Edit Data Statistics Graphs Models Distributions Tools Help 1. Statistics→Means→One-way ANOVA... R One-Way Analysis of Variance 2. In the "One-Way Analysis of Variance" Enter name for model: AnovaModel.6 window, choose "Time of Day" as the Groups (pick one) Response Variable (pick one) Group variable and "Time" as the Response Variable. 3. Click OK. Pairwise comparisons of means Welch F-test not assuming equal variances O Help 🥱 Reset V OK X Cancel Apply

R Commander

Computer outputs

Steps to conduct a one-way ANOVA F-test:

1. Hypotheses

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_a:$ Not all means are equal

- 2. Significance level is $\alpha = 0.01$.
- 3. Test statistic $F_o = 46.03$ with $df_n = k 1 = 3 1 = 2$, $df_d = n k = 48 3 = 45$.
- 4. P-value= $P(F \ge F_o) = P(F \ge 46.03) = 1.31 \times 10^{-11}$ (given in the ANOVA table).
- 5. Reject H_0 , since p-value= $1.31 \times 10^{-11} < 0.01 (\alpha)$.
- 6. Conclusion: At the 1% significance level we have sufficient evidence that there is a significant difference between the mean downloading time at 7 a.m., 5 p.m., and 12 a.m.