## CONTENTS

Preface ..... 3
Lab 1 Download and install $R$ and $R$ commander ..... 4

1. 1 Download and Install R ..... 4
2. 2 Install the R Commander Package ..... 7
1.3 Starting R Commander ..... 13
1.4 Trouble Shooting ..... 14
Lab 2 First Taste of $R$ and $R$ Commander ..... 16
2.1 Data Entry ..... 16
2.1.1 Manually Enter ..... 16
2.1.2 Import From an Existing Data File ..... 16
2.2 Explore Data Using R Commander ..... 20
3. 2.1 Obtain Numerical Summaries ..... 22
2.2.2 Obtain Graphs ..... 24
Lab 3 Probability Distributions (Binomial and Normal) ..... 34
3.1 Binomial Distribution ..... 34
3.1.1 Steps to Apply the Binomial Formula ..... 34
3.1.2 Example: Application of Binomial Distribution ..... 34
3.2 Normal Distribution ..... 36
3.2.1 Find the Probabilities Related to Normal Distributions ..... 37
3.2.2 Find the Quantiles of Normal Distribution ..... 39
3.3 Generate Simple Random Samples from a Certain Distribution ..... 40
3.3.1 Setting a Seed ..... 40
3.3.2 Generate Simple Random Sample from a Normal Distribution. ..... 42
3.3.3 Generate Simple Random Sample from an Exponential Distribution ..... 43
Lab 4 Distribution of the sample mean \& Central Limit Theorem ..... 45
4.1 Obtain the Distribution of the Sample Mean From a Certain Distribution ..... 45
4.2 Distribution of the Sample Mean When the Population Distribution is Normal ..... 45
4.3 Distribution of the Sample Mean When the Population Distribution is Uniform ..... 48
4.4 Distribution of the Sample Mean When the Population Distribution is Exponential ..... 50
4.5 Distribution of the Sample Mean When the Population Distribution is Chi-Square ..... 52
4.6 Central Limit Theorem For the Sample Mean ..... 54
4.7 Central Limit Theorem For the Sample Proportion ..... 55
Lab 5 Confidence Interval and Hypothesis Tests for One Mean ..... 60
5.1 One-Sample $\boldsymbol{z}$ Test and Interval When the Population Standard Deviation is Known ..... 60
5.2 One-Sample $\boldsymbol{t}$ Test and Interval When the Population Standard Deviation is Unknown ..... 61
5.3 Relation Between Confidence Interval and Hypothesis Tests ..... 66
Lab 6 Confidence Interval \& Hypothesis Tests for Two Means ..... 67
6.1 Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval Based on Two Independent Samples ..... 67
6.1.1 Non-pooled Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval ..... 67
6.1.2 Pooled Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval ..... 73
6.1.3 Non-Pooled Versus Pooled Two-Sample $\boldsymbol{t}$ Test ..... 75
6.2 Paired $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval Based on Paired Sample ..... 76
Lab 7 Inferences for Population Proportions ..... 80
7.1 One-Proportion z Test \& z Interval Based on One Sample ..... 80
7.2 Two-Proportion z Test \& z Interval Based on Two Independent Samples ..... 83
7.2.1 Two-Proportion Z Interval ..... 83
7.2.2 Two-Proportion Z Test ..... 84
Lab 8 Chi-Square Tests ..... 88
8.1 Chi-Square Goodness-of Fit Test for one Categorical or Discrete Variable ..... 88
8.2 Chi-square Independence Test ..... 92
Lab 9 Simple Linear Regression. ..... 95
Lab 10 One-Way ANOVA ..... 98

## STAT 151 Lab Manual in R

## Preface

This lab manual was prepared for the lab component of the online STAT 151 course offered at MacEwan University. R is an open-source implementation of the S language. It works on multiple computing platforms and can be freely downloaded. This lab manual introduces how to conduct descriptive statistics and inferential statistics using $R$ and $R$ commander (an $R$ package). Descriptive statistics include drawing figures such as histogram, boxplot, normal Q-Q plot, scatter plot and obtaining statistical summaries such as mean, median, standard deviation, and quartiles. Inferential statistics cover onesample $z$ test and interval, one-sample $t$ test and $t$ interval, two-sample $t$ test and $t$ interval, oneproportion z test and interval, two-proportion z test and interval, chi-square tests, one-way ANOVA F test, and simple linear regression. This lab manual also illustrates how to obtain probabilities and cumulative probabilities and quantiles based on binomial distributions and normal distributions.

## LAB 1 Download and install R and R COMMANDER

## 1. 1 Download and Install R

You can google the downloading website:

1. Visit https://www.google.com and search for "r cran". The first item retrieved is the website to download R.

2. Click "Windows" if you have a windows machine or " $R$ for Mac OS $X$ " if you have a Mac machine.
3. In general, it is the best to install the most current version of $R$.
a. For Windows users, click "Download R 4.1.0 for Windows".

$$
\text { R-4.1.0 for Windows ( } 32 / 64 \text { bit) }
$$

## Download R 4 1.0 for Windows ( 86 megathses, $32 / 64$ hit)

## Inatalanon and other ineturupions

 Hew features in this verronIf you want to double-check that the package you have downloaded matches the package distribuned by CRAN, you can compare the md 5 sum of the exe to the fingerprist on the master server. onmmand line versions are available.

Frequentily uaked cquantiona

- Does R rum under my version of Wibdowat
- How do I wofate packnass in my frexious version of R ?
* Should I rum 32-bit or 64-bit R?

Please see the R FAQ for geversl information sbont $R$ and the R Windonas FAQ for Windons-specific inforcation.
Othes builda

- Patches to this release are inoorpoented in the t-patched mapabot build.
- A buid of the developuent version (which will eventually become the aest major releses of $R$ ) is available in the r-devel mapelive Imilnt.
* Rogrioss relenses

Note to welenseterv: A stable hink which will redurect to the conman Wiodows binary release is
SCRAN MIRROR $>$ bin-windows bare $\operatorname{si}$ leane html

Last change: 2021-05-18
b. For Mac users, click "R-4.1.0.pkg". Make sure that you install XQuartz at https://www.xquartz.org/ as well. You could find it in "Applications $\rightarrow$ Utilities" after installation.

R for macos

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  Fperasi sha] 3-4.1.0.pk3 <br>  <br>  |  |
| Letart malanem: |  |
|  <br>  (ca F (m) |  <br>  <br>  |
|  |  the 06 , to a new atijet verim |
|  |  |
|  |  eve the toall directory |
|  <br>  (a) man |  <br>  Ingorisat this vestien der NOT woek we ble latel-tesef Mas |
|  |  |
|  |  <br>  <br>  |
| c. Please refer to Dr. John 's guidelines for trouble shooting at |  |
| https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html. |  |

4. If the most current release does not work well with the R commander package "Rcmdr" or the operating system of your machine does not support the most current release, you could install one of the earlier releases. For example, here are the steps to install previous release R 3.6.3 for Windows and R 3.3.3 for Mac instead.
a. For Windows users, click "Previous releases" to get an earlier version of R. Choose "R 3.6.3 (February, 2020)". And then click "Download R 3.6.3 for Windows"


If you wait to double-check that the package you have downlouded matches the package distributed by CRAN, you can compare the mids mim of the e windows: both graphical and command line versions are available.

Frequently asked questions

- Does R rua under my verrion of Windows?
- How do I update paclages in my previous version of R?
- Sbould I run 32-bit or 64-bit R?

Planse see the R FAQ for general information about R and the R Windows FAQ for Winders-specific information.
Other builda

- Patcbes to this release are incorporated in the r-patshed wapshot fruild.
- A build of the development version (which will eventually becouse the next major release of $R$ ) is available in the t-devel spapshot build
- Previous releager

Note to webmasters: A stable link which will redirect to the current Windows binary release is
CCRAN MIRROR - biniwindow blasereleses.htmil.

Last change: 2020-06-22

```
\leftarrow}->\textrm{C}\mathrm{ 会
```



## Previous Releases of R for Windows

This directory contains previous binary releases of R for Wirsdows.
The curreat release, and links to development smapshots, are available bere. Source code for these releases and others is available through the main CRAN page.
tn this directory:

```
R.4.0.2 (Fune, 2020)
R 4.0.1 (June, 2020)
R 4.0.0 (April, 2020)
R 3.6.3 (Febnary, 2020)
R.3.6.2 (December, 2019)
R 3.6.1 (July, 2019)
R 3.6.0 (ApriL, 2019)
R 3.5.3 (March, 2019)
R.3.5.2 (December, 2018)
R 3.5.1 (July. 2018)
R 3.5.0 (April, 2018)
R.3.4.4 (March, 2018)
R 3.4.3 (November, 2017)
R 3.4.2 (September, 2017)
R 3.4.1 (June, 2017)
R.3.4.0 (April, 2017)
R 3.3.3(March, 2017)
R 3.3.2 (October, 2016)
R 3.3.1 (June, 2016)
R.3.3.0 (April, 2016)
R 3.2.5 (April, 2016)
R 3.2.4 (March, 2016)
R 3.2.3 (December, 2015)
R 3.2.2 (August, 2015)
R 3.2.1 (June, 2015)
R.3.2.0 (April, 2015)
R 3.1.3(March, 2015)
```


$\mathrm{R}-3,6,3$ for Windows ( $32 / 64$ bit)
Download R 3.6,3 for Windows ( 8,5 megabyter, 32 b 4 bit )
Intallation and ather intavictions
Nen teatures in this version

If you want to double-check that the package you have downlouded matches the package distributed by CRAN, you can compare the mid5um of the exe to the fingerprian windows both graphical and sommand live versiegs are available.

```
Frequentiy askod queationa
```

- Does R na uoder me versien of Wiadows?
- How do I update packages in my previons versian of $R$ ?
- Sbould I num 32-bat on 64-hit R?

Please see the REAQ for general information about R and the R Windoms FAQ for Windows-specific informstion.
other builds

- Patches to this release are incorporated in the E-patshed reapsios boild
- A baild of the development version (which will evestually become the next major release of $R$ ) is available in the I -devel maghthot build
- Previous relezaes

Note to webmasters: A stable link which will redirect to the current Wiedows binary release is
SCRAN MIRROR - bin windows base teleate htm

Last change: 2020-02-29
b. For Mac users, click "R-3.3.3.pkg" to install version R 3.3.3. Make sure that you install XQuartz at https://www.xquartz.org/ as well.





$$
\text { if } 4.0 .2 \text { "Taking det Again" ralesaed on 2020/0h/2: }
$$


Nese chock the

photill -ient-sigestion- N-4,0,2ipt\%
Latest znimane



|  |
| :---: |
|  |  |

SEWS (fer Mac GIT)

 macOs lo a ack mpar verisul
 - the ionle livectary

Nemy festira and chaysu in ber R.app Mas GRI

```
Mas-0!J.t %)by
```




Binanian for legaey os X sy=tam


 the telti il prockage ar build packaye docimeatation fram muzes





## 1. 2 Install the R Commander Package

There are two ways to install the R Commander package.
The first way to install R Commander (an easier way):

1. Once you have installed $R$, open it by double-clicking on the icon.

| To launch R, |
| :--- |
| double click the |
| icon |
| Ri386 3.6.3 |

2. A window called "R Console" will open.

3. At the > command prompt, type the command install.packages("Rcmdr"), and click "enter".

4. $R$ will ask you to select a CRAN mirror; pick the first, " 0 -Cloud" mirror, or a mirror site near you.
```
(2) now dzaip
Fi|e fofe View Mace periapen minabos Hity
```



5. Once the R commander package is installed, to load the Rcmdr package, just type the command library(Rcmdr) beside the > prompt and click "enter". The name of the package is case sensitive.


The second way to install the $\mathbf{R}$ commander package:

1. Once you have installed $R$, open it by double-clicking on the icon.
2. A window called "R Console" will open.
3. Click "Packages" on the menu bar, select "Install package(s)..." in the drop-down menu.

4. Click "OK" or select a location closest to you in the "HTTPS CRAN mirror" drop-down menu, and click "OK".

## 



Secure CRAN mirrors

## 0.Cloud hitterl

Australia (Canberra) [https]
Australia (Meibourne 1) [https]
Australia (Melboume 2) [https]
Australis (Perth) [https]
Austria [https]
Selgium (Erussels) [https]
Brazil (BA) [httpu]
Brazil (PR) [https]
Brazil (R) [https]
Brazil (SP 1) [https]
Brazil (SP 2) [https]
Bulgaria [https]
Canada (MB) [https]
Canada (ON 2) [https]
Chile (Santiago) [https]
China (Beijing 2) Ihttps]
China (Hefei) [https]
China (Hong Kong) [https]
China (Guangzhou) [https]
China (Lanzhou) [https]
China (Nanjing) [https]
Chins (Shanghai 1) (https)
China (Shanghai 2) [https)
Chins (Shenaher) [https]
Costa Rica [https]
Czech Republic [https]
Denmark [https]
East Asia [https]
Ecuador (Cuenca) [https]
Ecuador (Cuito) [https]
Estonia [https]
France (Lyon 1) [https]
France (Lyon 2) [https]
France (Marseilie) [https]
France (Montpellier) [https)
Germany (Erlangen) [https]
Germany (Leipzig) [https]

OK
Cancel
5. Scroll down in the "Packages" drop-down menu, select the package "Rcmdr" and click "OK".

6. Once the package is installed, the message "package 'Rcmdr' successfully unpacked and MD5 sums checked" should be shown in the R Console window.

7. Once the R commander package is installed, to load the Rcmdr package, just type the command library(Rcmdr) and click "enter".

### 1.3 Starting R Commander

If $R$ is not already open, open it by clicking on its icon. To open $R$ Commander, at the > prompt type library("Rcmdr") and press Enter. If an error message says "lack of some packages, would you like to install those packages", click "Yes" and select "download from CRAN".

You should see a large new window pop up, labeled R Commander.


You are now ready to analyze your data with $R$ Commander. If you close this window while $R$ is still open, you can start R Commander again by entering the command "Commander()" in R Console. Entering "library(Rcmdr)" in this situation will not work unless you close R and open it again.

### 1.4 Trouble Shooting

One possible way to fix the problem is to copy the error message to Google and you might find a remedy. Here are some common problems when installing R commander, the "Rcmdr" package.

1. Error messages say something like "Warning in install.packages("Rcmdr") : 'lib = "C:/Program Files/R/R-3.6.3/library"' is not writable".
a. Run R with Administrator privileges by right-clicking on the R shortcut and selecting 'Run as Administrator'.
b. Double check whether you have any anti-virus program or security setting blocking installing software from so-called unknown developers. If yes, you might need to set your default secure cran mirror as trustable site.
2. Any error related to the tcltk package:
a. You might have installed the most current version of R , but your system has not been updated. Try installing a previous version, say R 3.6.3 for Windows users and R 3.3.3 for Mac users.
b. For Mac users, make sure that XQuartz has been installed.
3. Something like .zip file is not writable. Change the path before installing Rcmdr:
.libPaths("C:<br>Program Files <br>R<br>R-3.6.3<br>iibrary")
4. Make sure that you run XQuartz before running R. Restart your computer if opening XQuartz behand does not work.

Attaching package: 'carData'
The following objects are masked from 'package:car':
Guyer, UN, Vocab
lattice thene set by effectsTheme ()
See ?effectsTheme for details.
xcode-select: note: no developer tools were found at "/Applicotions/Xcode, of requesting install. Choose an option in the diolog to download the command 1 developer tools.
Error : , onAttach failed in attachNanespace() for "Remdr", details: call: structure(.External(.C_dotTclobjv, objv), class = "tclobj") error: [tcl] invalid comrand nome "image".

In oddition: Warning messages:
1: running comnond ' '/usc/bin/otool' -L '/Library/Frameworks/R.framewark/
Resources/library/tcltik/libs//tcltk.so' ' had status 1
2: In fun(libnane, pkgnane) : couldn't connect to display " $: 0$ "
Error: package or nomespace load failed for 'Rondr'
$>1$

## Lab 2 Finst Taste of R and R Commander

This lab introduces how to enter data into $R$ and explore the data using figures and numerical summaries.

### 2.1 DATA EnTRY

There are several ways to enter data into $R$ : manually enter, import from an existing data file, export from a built-in R package.

### 2.1.1 Manually Enter

1. Start a new data set through Data $\rightarrow$ New data set...
2. Enter a new name for the data set, say "usedcar" $\rightarrow$ OK

Note: the name cannot have space and special symbols such as \$
Note: R is case-sensitive hence usedcar $\neq$ Usedcar
3. A data editor window where you can type in your data using a typical spreadsheet format. You can type rowname (say car), variable names (say price and age). Each row corresponds to one independent observation. For example, the spreadsheet below shows the price (in $\$ 1000$ ) and the age (in year) of four used cars. The first car is 1 year old and its price is 14 ( $\$ 1000$ ).
4. Press Enter or click "Add row" if you need more rows.
5. Click "Add column" if you need more variables.
6. Click "OK".


### 2.1.2 Import From an Existing Data File

The existing data can be SPSS, Minitab, text, excel, SAS, and STATA data sets. We demonstrate with text, SPSS and Excel files. Data files used in this manual will be available in Blackboard (or another location specified by your instructor) and students can download them there.

## Import from a text file

The data file needs to be organized as a classic data frame. Each column represents a single variable, e.g. price. Each row represents one individual. Header information needs to be contained to a single row.

For this example, please download the file called car.txt from online.

1. Date $\rightarrow$ Import data $\rightarrow$ from text file, clipboard or URL...

2. Enter the name (say car) for the data set and click "OK".
3. Follow the path to where you stored the text file named car.txt is stored, and click "open".
4. The imported data set "car" is now an active data set. Click "View data set" to view data.


Note: R commander was developed as an easy to use graphical user interface (GUI) for R language. The task can be also carried out by typing the commands directly in the R Console window. The corresponding commands are shown in the R Script sub-window. And the corresponding computer output is shown in the Output sub-window. In the Messages sub-window, it tells us that the data set has 15 rows and 2 columns.

## Import from an SPSS file

For this example, please download the file called 8variable_salehome.sav from online. This data set gives the price of 88 sale homes and had columns that detail eight features of the homes.

## 1. Date $\rightarrow$ Import data $\rightarrow$ from SPSS data set...


2. Enter the name (say Home) that you want to call the data set and click "OK".
3. Go to the path where the sav file 8 variable_salehome.sav is stored and click "open".
4. The imported data set "Home" is now an active data set. Click "View data set" to view the data.


## Import from an Excel file

For this example, please download the file called marathon.xlsx from online.

## 1. Data $\rightarrow$ Import data $\rightarrow$ from Excel data set...


2. Enter the name (say Marathon) for the data set and click "OK".
3. Go to the path where the Excel data file is stored and select the file marathon.xlsx and click "open".
4. The imported data set "Marathon" is now an active data set. Click "View data set" to view the data.


This data set gives the winning times (in minutes) for men and women in the New York City Marathon between 1978 and 2006 (www.nycmarathon.org). The last column gives the difference in winning time between female and male.

### 2.2 Explore Data Using R Commander

Basically, there are two types of statistics: descriptive statistics and inferential statistics.

- Descriptive statistics consists of numerical and graphical methods for organizing and summarizing the sampled data. One only focuses on the sampled data.
- Inferential statistics consists of methods for drawing conclusions about the population based on information obtained from the sampled data. It uses the sampled data to make estimates, decisions, predictions, or other generalizations about the population. For inferential study, look for the key words "estimate for all" or "prediction for all".
This lab session focuses on how to obtain descriptive statistics using R commander. Statistics is all about data. And data are information about a group of individuals organized in variables. There are two types of variables: qualitative/categorical and quantitative variables. The quantitative variable can be further classified as either continuous or discrete.
- Qualitative variable: A non-numerically valued variable that classifies subjects into different categories, such as "Name" and "Sex". The values of qualitative variables are not numbers. A qualitative variable is also called a categorical variable.
- Quantitative variable: A numerically valued variable (e.g., "Number of hours/day on internet"). There are two types of quantitative variable --- continuous and discrete.
- Continuous variable: A quantitative variable whose possible values form some interval of numbers (e.g., height, length of feet, salary, age). Technically speaking, continuous
variables have an arbitrary number of decimal places. For any two possible values, we can always find some value in between.
- Discrete variable: A quantitative variable whose possible values can be listed (e.g., number of siblings, number of phone calls within an hour.)
The following table summarizes the descriptive methods for some standard statistical tasks.

|  | Descriptive Statistics |  |
| :---: | :---: | :---: |
| Task | Graphical | Numerical |
| Display one <br> qualitative variable | pie chart <br> bar chart | frequency table <br> relative frequency table |
| Display two <br> qualitative variables | side-by-side <br> pie or bar chart | contingency table |
| Display one <br> quantitative <br> variable | histogram <br> dot plot <br> boxplot <br> stem-leaf plot | 5-number summary <br> (mean, SD) <br> (median, IQR) |
| Display two <br> quantitative variables | scatter plot | correlation coefficient <br> Display one <br> qualitative and |
| side-by-side <br> histogram <br> boxplot | (covered in Chapter 14) |  |
| stem-leaf plot |  |  |

The 8variable_salehome.xlsx price dataset that you can find and download from online will be used as a demo in this section. There are eight variables of different data types. Size, area, age, and price can be treated as quantitative continuous; bath (\# of bathrooms) and stories (\# of stories) can be treated as quantitative discrete, and pool and roof are qualitative (categorical). We first import the data set into $R$ commander.

1. Data $\rightarrow$ Import data $\rightarrow$ from Excel data set...
2. Enter the name (say Home) for the data set and click "OK".
3. Go to the path where the Excel data file is stored and select the file 8variable_salehome.xlsx and click "open".
4. The imported data set "8variable_salehome.xlsx" is now an active data set named Home in R. Click "View data set" to view the data.

| A Home |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -18e | DCoI | area | 3ge | Exth | ithurin | re.of | price |
| 1 | 1865 | Yes | 9509.4 | 18 | 2.5 | 1 | Non-tile | 145950 |
| P | 2576 | Xes | 11076.9 | 15 | 3.0 | 2 | Non-tile | 160000 |
| 3 | 2576 | Yes | 10168.8 | 15 | 3.0 |  | Non-tile | 184000 |
| 4 | 2056 | Yes | 13430.4 | 15 | 2.0 |  | Non-tile | 152000 |
| 5 | 1730 | Yes | 11083.5 | 17 | 2.0 | 1 | Non-tile | 149000 |
| 6 | 18 BL 2 | Yes | 10559.8 | 18 | 2.5 |  | Non-tile | 132000 |
| 7 | 2102 | Yes | 14533.7 | 16 | 2.0 | 1 | Non-tile | 150000 |
| 0 | 2461 | Yes | 9596.2 | 6 | 3.0 |  | rile | 190000 |
| 3 | 2461 | Yes | 10231.5 | 6 | 3.0 |  | Tile | 226000 |
| 10 | 1514 | Yes | 10911.5 | 16 | 2.0 | 1 | Non-tile | 120000 |
| 11 | 1994 | Yes | 13605.7 | 17 | 2.0 |  | Non-tile | 141000 |
| 12 | 2455 | Yes | 14704.1 | 16 | 3.5 |  | 1 Non-tile | 169000 |
| 13 | 1730 | Yes | 14623.4 | 17 | 2.0 |  | Non-tile | 138600 |
| 14 | 1655 | No | 9747.7 | 18 | 2.5 |  | Non-tile | 124000 |
| 15 | 1865 | Yes | 9932.9 | 18 | 2.5 |  | Non-tile | 230000 |
| 16 | 1882 | Yes | 10274.4 | 18 | 2.5 |  | Tile | 150000 |
| 17 | 2718 | Yes | 9675.3 | 6 | 3.5 |  | Tile | 243000 |
| 18 | 1882 | Yes | 11825.1 | 18 | 2.5 |  | Non-tile | 137900 |
| 19 | 1882 | No | 14831.5 | 18 | 2.5 |  | Non-tile | 111500 |
| 20 | 1994 | Yes | 16122.5 | 17 | 2.0 |  | Non-tile | 152000 |
| 21 | 2214 | Yes | 12358.3 | 18 | 2.5 |  | Non-tile | 147000 |
| 22 | 2718 | Yes | 16214.1 | c | 3.5 |  | Tile | 245000 |
| 83 | 2576 | Yes | 12055.5 | 15 | 3.0 |  | 2 Non-tile | 175000 |
| 24 | 3124 | No | 9497.6 | 6 | 3.5 |  | 1 Pile | 242500 |
| 25 | 2128 | Yes | 9823.7 | 15 | 2.5 |  | 1 Non-tile | 152000 |
| 2 C | 1655 | Yes | 10520.5 | 18 | 2.5 |  | 1 Non-tile | 137000 |
| 27 | 2214 | No | 10739.0 | 18 | 2.5 |  | 1 Non-tile | 148000 |
| 28 | 2576 | Yes | 11087.7 | 15 | 3.0 |  | Non-tile | 175000 |
| 29 | 2928 | Yes | 16458.6 | 10 | 3.5 |  | Tile | 210000 |
| 10 | 2576 | Yes | 10368. 5 | 15 | 3.0 |  | 2 Non-Eile | 169900 |

## 2. 2.1 Obtain Numerical Summaries

We can obtain the numerical summaries for each variable of the active data set:

## Statistics $\rightarrow$ Summaries $\rightarrow$ Active data set



1. For quantitative variables, it gives the mean and five number summaries, i.e., minimum, $1^{\text {st }}$ quartile, median ( $2^{\text {nd }}$ quartile), $3^{\text {rd }}$, and maximum. Take age for example: the average age of those 88 sale homes is 14.14 years with a median 16 years. The newest $25 \%$ of homes are between 6 to 9.75 years old; another $25 \%$ are between 9.75 and 16 ; another $25 \%$ are between 16 and 18 ; the oldest $25 \%$ are 18 years old.
2. For qualitative (categorical) variables, it gives the frequencies (number of times) for which values occur. Take Pool for example: 18 out of 88 homes do not have a swimming pool and 70 have.

We can obtain the numerical summaries for a single quantitative variable.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Numerical summaries...

Note: numerical summaries are only for quantitative variables. For categorical variables, we use frequency distributions to summarize counts of the variable values (see below).
2. Select the variable of interest, say age, from the list and click OK.


Output:

| mean | sd | IQR | $0 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $100 \%$ | $n$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 14.13636 | 4.823748 | 8.25 | 6 | 9.75 | 16 | 18 | 18 | 88 |

Understand the output:

| mean | Sample mean, measure of central tendency |
| :--- | :--- |
| sd | Sample standard deviation, measure of spread (variation) |
| IQR | Inter-quartile range $=3^{\text {rd }}$ <br> are within IQR |
| $0 \%$ | Minimum value, $0^{\text {th }}$ percentile |
| $25 \%$ | $1^{\text {st }}$ quartile, the middle $50 \%$ of the observations |
| $50 \%$ | $2^{\text {nd }}$ quartile, the value below which 25 percent of the observations may be found. <br> may be found. |
| $75 \%$ | $3^{\text {rd }}$ quartile. The value below which 75 percent of the observations may be found. |
| $100 \%$ | Maximum value |
| $n$ | Sample size, number of individuals in the sample |

We can obtain the numerical summaries for a single qualitative (categorical) variable.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Frequency distributions...
2. Select the variable of interest, say pool, from the list and click OK.


We can obtain the numerical summaries of a single quantitative variable among different sub-groups.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Numerical summaries...
2. Select the variable of interest from the list, e.g., price
3. Click "Summarize by groups..."
4. In the pop-up window "Groups", select the categorical variable defining the sub-groups (say the roof type indicating the whether the home has a tile roof or non-tile roof) and click OK.
5. Click OK in the pop-up window Numerical Summaries.


Output:

|  | mean | sd | IQR | $0 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $100 \%$ | data:n |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Non-tile | 139225.7 | 20080.80 | 27500 | 105000 | 123500 | 137000 | 151000 | 185500 | 63 |
| Tile | 227856.0 | 29833.54 | 35000 | 150000 | 210000 | 237000 | 245000 | 262500 | 25 |

Interpretation of the computer output:

1. Out of those 88 sale homes, 63 homes have a non-tile roof and 25 have a tile roof.
2. The average price of homes with a tile roof is $\$ 227856.0$ and the average price of homes with a non-tile roof is $\$ 139225.7$, which means on average homes with a tile roof are more expensive than homes with a non-tile roof.
3. The price of homes with a tile roof has a larger variation than the price of homes with a non-tile roof, because it has a larger sample standard deviation ( $\$ 29833.54$ versus $\$ 20080.80$ ) and a larger IQR (\$35000 versus \$27500).
4. The price of homes with a tile roof also has a larger minimum, quartiles, and maximum, respectively.

### 2.2.2 Obtain Graphs

Almost all graphs can be found under Graphs in the menu bar. In general, the bar chart and pie chart are for qualitative (categorical) variables, while the histogram, boxplot, dot plot, and stem-and-leaf display are for quantitative variables. The scatter plot is for two quantitative variables. The quantile-comparison (QQ) plot is used to check whether the data follow a certain distribution. We can use it to check whether the data follow a normal distribution; this is called the normal probability plot in the textbook.

## Histogram for a single quantitative variable:

1. Graphs $\rightarrow$ Histogram...
2. Select the variable of interest from the list, e.g., price
3. Click Options to specify the Axis scaling; use Frequency counts for frequency and Percentages for relative frequency. Specify the labels and the title of the histogram if you want.
4. Click OK



Side-by-side histogram to compare a single quantitative variable among different sub-groups

## Graphs $\rightarrow$ Histogram...

1. Select the variable of interest from the list, e.g., price
2. Click Plot by groups..., select the categorical variable defining the sub-groups (say roof), click OK
3. Click Options to specify the Axis scaling, making sure to use Percentage for a side-by-side plot
4. Click OK


We can also draw the side-by-side boxplots to compare the price of homes with a tile and non-tile roof (see the boxplots output below)

1. Graphs $\rightarrow$ Boxplot...
2. Select the variable of interest from the list, e.g., price
3. Click Plot by groups..., select the categorical variable defining the sub-groups (say roof), click OK
4. Click OK


## Bar Chart for a single qualitative (categorical) variable)

1. Graphs $\rightarrow$ Bar graph...
2. Select the variable of interest from the list, e.g., pool (whether the home has a swimming pool)
3. Click Options to specify style of the bars. Click OK
4. Click OK


Pie Chart for a single qualitative (categorical) variable

Graphs $\rightarrow$ Bar graph... $\rightarrow$ select the variable (say pool) $\rightarrow$ Click OK


Contingency (two-way) table for two categorical variables

1. Statistics $\rightarrow$ Contingency table $\rightarrow$ Two-way table...
2. Specify the row variable and column variable (say pool and roof, respectively)
3. Click Statistics $\rightarrow$ No percentage (only gives the counts in each cell)
4. Click OK


| Output: |  |  |  | 1. The row variable is pool, and the column variable is roof |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency table:roof |  |  |  |  | 11 out of 88 homes do not have a swimming pool and |
| pool | Non-tile | Tile |  |  | ave a non-tile roof; 7 have no pool but a tile roof; 52 |
| No | 11 |  | 7 |  | have a pool and non-tile roof; and 18 homes have a pool |
| Yes | 52 |  | 18 |  | and a tile roof. |

## Side-by-side bar charts (conditional on sample size of sub-groups) for two categorical variables

Based on the contingency table, we can draw a side-by-side bar chart to check whether those homes with a swimming pool and without a swimming pool share the same pattern regarding to the roof type.

1. Graphs $\rightarrow$ Bar graph...
2. Select the variable for X-axis, e.g., pool
3. Click Plot by groups, select the variable whose pattern is of interest (say roof type here). Click ok.
4. Click Options to specify style of the group bars. Under Axis Scaling, choose Percentages. Under Style of Group Bars, choose Side-by-side (parallel). Under Percentages for the Group Bars, choose Conditional. This will account for the sample size in each sub-group, and the provided percentage in each cluster of bars will be the percentage from each subgroup. Click OK.
5. Click OK

Below, you can see:

1) the bar for no pool and non-tile roof is at a height of $11 / 18=61.1 \%$ and the bar for no pool and no-tile is at $7 / 18=38.9 \%$. Percentages add to $100 \%$ for the no pool group.
2) the bar for yes pool and non-tile roof is at a height of $52 / 70=74.3 \%$ and the bar for yes pool and tile roof is at $18 / 70=25.7 \%$. Percentages add to $100 \%$ for the yes pool group.


Side-by-side bar charts (using overall sample sizes) for two categorical variables

If at step 4 above, you had chosen Total under "Percentages for Group Bars", the bars did not consider the sample size of each subgroup, you would divide the total of each bar by the overall total number of observations in the dataset. This is not useful or desirable when samples sizes are different, but the example is included here so you can see what happens.

Here you can see:

1) the bar for no pool and non-tile roof is at a height of $11 / 88=12.5 \%$ and the bar for no pool and no-tile is at $7 / 88=8.0 \%$.
2) the bar for yes pool and non-tile roof is at a height of $52 / 88=59.0 \%$ and the bar for yes pool and tile roof is at $18 / 88=20.5 \%$.
3)The total of all the percentages over all the four bars is $100 \%$.


## Side-by-side pie charts (with subset data sets) for two categorical variables

There is no easy way to draw a side-by-side pie chart; we need to select the subset of cases of interest and then draw an individual pie chart for each subset. For this example, we begin with the active data set you called Home in R (that was from the Excel file 8variable_salehome.xlsx that we have been using throughout section 2.2 of the manual) and then select homes with a swimming pool and save the data in a new data subset called PoolYes, and then we select homes without a swimming pool from the active data Home and save that data in a new data subset called PoolNo. And then we draw one pie chart on roof type for each subset dataset PoolYes and PoolNo.

1. Data $\rightarrow$ Active data set $\rightarrow$ Subset active data set...
2. Select the variable to split the data (say pool here)
3. In Subset expression, type the selection condition. For example, pool=="Yes"

Note: if the value is not numerical, you need to surround the value with double quotes. Also, the variable name "pool" is case sensitive, the outcome "Yes" is case sensitive, and you must use two equal signs.
4. In Name of new data set, type the name of the new data set. For example, PoolYes contains all homes with a swimming pool.

Note: Now the active data set is PoolYes. Make sure you switch the active data set back to Home before selecting homes without a swimming pool.
5. Click Data set, select the whole data set (Home) and click OK
6. Repeat for homes without a swimming pool. Use the Subset expression pool=="No" and use the name PoolNo as your Name of New data set.
Note: if the value is not numerical, you need to surround the value with double quotes. Also, the variable name "pool" is case sensitive, the outcome "No" is case sensitive, and you must use two equal signs. Also, there is a space after No!
7. Click Data set, select PoolYes as the active data set and click OK
8. Graphs $\rightarrow$ Pie Chart..., select roof and click OK
9. Click Data set, select PoolNo as the active data set and click OK
10. Graphs $\rightarrow$ Pie Chart..., select roof and click OK


For your reference, the following table summarizes selection operators in R .

| Symbol/code | Name | Use |
| :--- | :--- | :--- |
| $==$ | equality | used to indicate the variable should equal |
| $!=$ | Inequality | used to indicate the variable should not equal |
| $\&$ | And | used to combine multiple expressions |
| $!$ | Or | used to combine multiple expressions |
| is.na(varname) |  | Include the missing values of a variable |
| !is.na(varname) |  | Exclude the missing values of a variable |
| $>$ | Greater than |  |
| $<$ | Less than |  |
| $>=$ |  | More than or equal to |
| $<=$ |  | Less than or equal to |

## Scatterplot and Pearson correlation coefficient for two numerical quantitative variables.

Here we will investigate the relationship between two quantitative variables.
We again use the Home data.
Draw a scatter plot of price ( Y -axis) versus size (X-axis). Could we model their relationship using a straight line? How does price change when size increases?

1. Click Data set, select Home as the active data set and click OK
2. Graphs $\rightarrow$ Scatterplot...
3. Choose size as the $\mathbf{y}$-variable and price as the $\mathbf{x}$ variable.
4. Click Options, select Least-squares line under Plot Options. Click OK.


Comments: It might be okay to model the relationship between price and size using a straight line. When size increases the price increases. This means price and size have a positive association.

Like the five-number summary is the numerical summary of a boxplot, the numerical summary for a scatter plot is the Pearson correlation coefficient $r$; it captures the association between the response variable $y$ (e.g., price) and the predictor variable $x$ (e.g., size) in three aspects:

- Pattern: it captures only the linear association. Do not use the correlation coefficient $r$ to describe non-linear association.
- Strength: the closer $r$ is to either +1 or -1 , the stronger the linear association. $r \approx 0$ indicates no or weak linear association.
- Direction: positive or negative. Positive association ( $r>0$ ) means that $y$ and $x$ change in the same direction. That is, $y$ increases (decreases) if $x$ increases (decreases). Negative association $(r<0)$ means that $y$ and $x$ change in the opposite direction. That is, $y$ increases (decreases) if $x$ decreases (increases).

The following figure gives four scatter plots and their corresponding correlation coefficients.


Calculate the Pearson correlation coefficient between price and size.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Correlation Matrix
2. Select price and size together, click OK

| It Correlation | It | - | 1- | mex | Output |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Variables ipicktwo ar minel |  |  |  |  | pricesize |
| ase |  |  |  |  |  |
| wrea |  |  |  |  | $\text { price } 1.00000000 .8571687$ |
| price |  |  |  |  | $\text { size } 0.8571687 \quad 1.0000000$ |
| pae <br> shories |  |  |  |  |  |
| Gpe of Cometatiots |  |  |  |  |  |
| Q Pearson product-mament |  |  |  |  | The correlation coefficient between price |
| 15 Spearmims ravk-order |  |  |  |  |  |
| - Partial |  |  |  |  | and size is $r=0.857$. The value is quite close to +1 . There is fairly strong, positive, |
| Onsemaciont so diea Complete ebservations |  |  |  |  |  |
|  |  |  |  |  |  |
| \|ciairwse-complete observations |  |  |  |  | linear association between price and size. |
| C]Pirwise p-atues |  |  |  |  |  |
| (8) Help | 6) Reret | / cos | 14. Cancel | At Anply |  |

We can also calculate the correlation coefficient for each pair of the quantitative variables. To do this, select all the variables when you run the correlation matrix commands above.

|  | age | area | bath | price | size | stories |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | 1.00000000 | 0.11507397 | -0.7494382 | -0.92896864 | -0.7536454 | 0.04393443 | strong negative |
| area | 0.11507397 | 1.00000000 | 0.0111107 | 0.03110192 | 0.2010353 | 0.19604329 | strong, negative, |
| bath | -0.74943817 | 0.01111070 | 1.0000000 | 0.79871946 | 0.8234954 | 0.26569831 | linear association. |
| price | -0.92896864 | 0.03110192 | 0.7987195 | 1.00000000 | 0.8571687 | 0.03983124 | Size and bath have a |
| size | -0.75364538 | 0.20103532 | 0.8234954 | 0.85716868 | 1.0000000 | 0.27797829 | moderately strong, |
| stories | 0.04393443 | 0.19604329 | 0.2656983 | 0.03983124 | 0.2779783 | 1.00000000 | positive association. |

In statistics, it is important to check whether the data are taken from a normal population. The graphical tool used is called the normal probability plot. The normal probability plot is also called the normal Q-Q (Quantile-Quantile) plot since it is a scatter plot with the observed and theoretical quantiles as the axis. It does not matter whether we put the observed quantile on the x -axis or on the y -axis. If the data are taken from a normal population, the points roughly fall on a straight line. By default, R commander plots the theoretical quantile on the $x$-axis and the observed quantile on the $y$-axis.

Using the home data set, check whether the price of sale homes follows a normal distribution.

1. Click Data set, select Home as the active data set and click OK
2. Graphs $\rightarrow$ Quantile-comparison plot...
3. Select price and click OK


## Lab 3 Probability Distributions (Binomial and Normal)

This chapter introduces how to use R commander to calculate probabilities related to Binomial distributions (a discrete distribution) and normal distributions (a continuous distribution).

### 3.1 Binomial Distribution

A Bernoulli trial is a chance experiment with only two possible outcomes: success or failure. Let $p$ be the probability of success. Repeat the Bernoulli trial n times and let $X=$ number of successes out of these $n$ outcomes. $X$ follows a Binomial distribution with parameters $n$ (\# of trials) and $p$ (probability of success).

### 3.1.1 Steps to Apply the Binomial Formula

- Identify $n$ (\# of trials) and $p$ (probability of success);
- Write down the event using the variable $X$;
- Re-write the event in the form of $P(X=a)$ or $P(X \leq a)$ or $P(X>a)$ if necessary.


### 3.1.2 Example: Application of Binomial Distribution

A quiz consists of 10 multiple choices questions with four choices A, B, C and D. I did not study and randomly picked one answer for each question.
(a) Find the probability that I got six correct answers.
(b) Find the probability that I got at least one correct answer.
(c) Find the probability that I got at least nine correct answers.
(d) Find the probability that I got eight to ten correct answers.

Solutions: For each question, I either got the correct answer or not. Each question is one Bernoulli trial. Since I randomly picked one answer, each of the four choices has the same chance to be chosen. There is only one correct answer and the probability of obtaining the correct answer is $1 / 4$. Whether I obtain the correct answer for the current question will not affect the chance of getting the correct answer for the next question, so the trials are independent with the same probability of success. Let $X=\#$ of correct answers. $X$ follows a binomial distribution. Its probability distribution is

$$
P(X=x)={ }_{n} C_{x} p^{x}(1-p)^{n-x}={ }_{10} C_{x}\left(\frac{1}{4}\right)^{x}\left(1-\frac{1}{4}\right)^{10-x}={ }_{10} C_{x}(0.25)^{x}(1-0.25)^{10-x}, \quad x=0,1, \ldots, 10 .
$$

Re-write the events in the form of $P(X=a)$ (binomial probabilities) or $P(X \leq a)$ (binomial lower tail probabilities) or $P(X>a)$ (binomial upper tail probabilities).
(a) Find the probability that I got six correct answers. $P(X=6)$

1. Distributions $\rightarrow$ Discrete distributions $\rightarrow$ Binomial distribution $\rightarrow$ Binomial probabilities
2. In "Binomial Probability" window, put $n$ in Binomial trials and $p$ in Probability of success


Note: Your computer output may use notation with e-in it, depending on your version of R. In computer outputs of R, $1.622200 e-02=1.622200 \times 10^{-2}=0.016222,1.622 e+02=1.622 \times 10^{2}=162.2$, $2.861023 e-05=2.861023 \times 10^{-5}=0.00002861023$.
(b) Find the probability that I got at least one correct answer. $P(X \geq 1)$ Note that $P(X \geq 1)=\boldsymbol{P}(\boldsymbol{X}>\mathbf{0})=P(X=1)+P(X=2)+\cdots+P(X=10)=\mathbf{1}-\boldsymbol{P}(\boldsymbol{X}=\mathbf{0})$

Therefore, there are two ways to calculate the answer:

- Based on the output of probability distribution, we find

$$
\mathbf{1}-\boldsymbol{P}(\boldsymbol{X}=\mathbf{0})=1-0.05631351=0.9436865
$$

- We can use the upper tail probability $\boldsymbol{P}(\boldsymbol{X}>\boldsymbol{x})$. In this question, we want $\boldsymbol{P}(\boldsymbol{X}>\mathbf{0})$.

1. Distributions $\rightarrow$ Discrete distributions $\rightarrow$ Binomial distribution $\rightarrow$ Binomial tail probabilities...
2. In "Binomial Probability" window, put $x$ in Variable value(s), $n$ in Binomial trials, and $p$ in Probability of success. In this example, $x=0, n=10, p=0.25$
3. Select Upper tail, since we want the upper tail probability (greater than)
4. Click OK

(c) Find the probability that I got at least nine correct answers. $P(X \geq 9)$

Note that $P(X \geq 9)=\boldsymbol{P}(\boldsymbol{X}>\mathbf{8})=\boldsymbol{P}(\boldsymbol{X}=\mathbf{9})+\boldsymbol{P}(\boldsymbol{X}=\mathbf{1 0})$
Therefore, there are two ways to calculate:

- Based on the output of probability distribution,

$$
\boldsymbol{P}(\boldsymbol{X}=\mathbf{9})+\boldsymbol{P}(\boldsymbol{X}=\mathbf{1 0})=0.00002861023+0.0000009536743=0.0000295639
$$

- Use the upper tail probability $\boldsymbol{P}(\boldsymbol{X}>\boldsymbol{x})$. In this question, we want $\boldsymbol{P}(\boldsymbol{X}>\boldsymbol{8})$.

1. Distributions $\rightarrow$ Discrete distributions $\rightarrow$ Binomial distribution $\rightarrow$ Binomial tail probabilities...
2. In "Binomial Probability" window, put $x$ in Variable value(s), $n$ in Binomial trials, and $p$ in Probability of success. In this question, $x=8, n=10, p=0.25$
3. Select Upper tail, since we want the upper tail probability (greater than)
4. Click OK

(d) Find the probability that I got eight to ten correct answers, inclusively. $P(8 \leq X \leq 10)$ Note that

$$
P(8 \leq X \leq 10)=P(X=8)+P(X=9)+P(X=10)=P(X \leq 10)-P(X \leq 7)=1-P(X \leq 7)
$$

Therefore, there are two ways to calculate:

- Based on the output of probability distribution,

$$
P(X=8)+P(X=9)+P(X=10)=0.0003862381+0.00002861023+0.0000009536743
$$

$$
=0.000415802
$$

- Use the lower tail probability $\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{x})$. In this question, we want $\boldsymbol{P}(\boldsymbol{X} \leq 7)$.

1. Distributions $\rightarrow$ Discrete distributions $\rightarrow$ Binomial distribution $\rightarrow$ Binomial tail probabilities...
2. In "Binomial Probability" window, put $x$ in Variable value(s), $n$ in Binomial trials, and $p$ in Probability of success. In this question, $x=7, n=10, p=0.25$
3. Select Lower tail, since we want the lower tail probability (less than or equal to)
4. Click OK

| R Binomial Probabilities |  |  |  | $\square$ | Output:$\text { [1] } 0.9995842$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Variable value(s) | 7 |  |  |  |  |
| Binomial trials | 10 |  |  |  |  |
| Probability of success Lower tail Upper tail | 0.25 |  |  |  | $\begin{gathered} P(\mathbf{8} \leq \boldsymbol{X} \leq \mathbf{1 0})=\mathbf{1}-\boldsymbol{P}(\boldsymbol{X} \leq 7) \\ =1-0.9995842=0.0004158 \end{gathered}$ |
| (3) Help | Reset | $\checkmark$ OK | \& Cancel | $\Rightarrow$ Apply |  |

### 3.2 Normal Distribution

We use the density curve to describe the distribution of a continuous variable. The total area under a density curve is one, and the area under the curve is related to the probability of a certain event. The most widely used continuous distribution is the normal distribution, which is well known as the bell-shaped and symmetric curve. The normal density function has two parameters: the mean $\mu$ and the standard deviation $\sigma$. The parameter $\mu$ controls the center (location) of the distribution and $\sigma$ controls the shape of the distribution. When $\sigma$ is larger, the curve appears to be shorter and fatter; when $\sigma$ is smaller, the curve appears to be taller and slimmer. If a random variable $X$ follows a normal distribution with mean $\mu$ and standard deviation $\sigma$, we write $X \sim N(\mu, \sigma)$. Its probability density function $f(x)$ is given by:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty, \text { with } \pi \approx 3.142, e \approx 2.718
$$

Recall that for a binomial distribution, $P(X \leq x)=P(X=0)+P(X=1)+\cdots+P(X=x)$. For a normal distribution which is continuous, $P(X=x)=0$ and therefore, $P(X \leq x)=P(X<x)$. There are two main applications of normal distributions: to find the probabilities given the $x$ values (tail probabilities) and to find the $x$ values given the probabilities (quantiles).

### 3.2.1 Find the Probabilities Related to Normal Distributions

Suppose grade $X$ follows a normal distribution with a mean 70 and a standard deviation 10. That is $X \sim N(70,10)$. We are interested in the probabilities of the following events.

1. Find the probability that a student has a grade below 60. $P(X<60)$
2. Find the probability that a student has a grade above 85. $P(X>85)$
3. Find the probability that a student has a grade between 60 and 85. $P(60<X<85)$

The following graphs show their corresponding probabilities:

(a) Find the probability that a student has a grade below 60.

We want $P(X<60)$, which is a lower tail probability.

1. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Normal probabilities
2. In "Normal Probability" window, put $x$ in Variable value(s), $\mu$ in Mean, and $\sigma$ in Standard deviation. In this question, $x=60, \mu=70, \sigma=10$
3. Select Lower tail, since we want the lower tail probability (less than)
4. Click OK


Output:
[1] 0.1586553

If $X \sim N(70,10), P(X<60)=0.1587$. If we randomly pick one student, the probability that the student obtains a grade below 60 is 0.1587 . Or $15.87 \%$ of the students obtain a grade below 60.
(b) Find the probability that a student has a grade above 85 .

We want $P(X>85)$ which is an upper tail probability.

1. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Normal probabilities
2. In "Normal Probability" window, put $x$ in Variable value(s), $\mu$ in Mean, and $\sigma$ in Standard deviation. In this question, $x=85, \mu=70, \sigma=10$
3. Select Upper tail, since we want the upper tail probability (greater than)
4. Click OK

(c) Find the probability that a student has a grade between 60 and 85 .

We want $P(60<X<85)$, the area between 60 and 80 , which is equal to the area to the left of 85 minus the area to the left of 60 .



Output:
[1] 0.9331928
If $X \sim N(70,10), P(X<85)=0.9332$.
$P(60<X<85)=P(X<85)-P(X<60)$
$=0.9331928-0.1586553$
$=0.7745375$
$77.45 \%$ of the students obtain a between 60 and 85.

### 3.2.2 Find the Quantiles of Normal Distribution

That is given the percentage or probability q , find the $x$ value such that $q=P(X<x)$. The $x$ value is called the quantile of the distribution corresponding to q .

Suppose grade $X$ follows a normal distribution with a mean 70 and a standard deviation 10. That is $X \sim N(70,10)$.
(a) If the bottom $5 \%$ of students will fail, find the passing grade.

We want to find the $x$ value such that $P(X<x)=0.05$, i.e., $5 \%$ of grades below what value.

1. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Normal quantiles
2. In "Normal Quantiles" window, put $q$ in Probabilities, $\mu$ in Mean, and $\sigma$ in Standard deviation. In this question, $q=0.05, \mu=70, \sigma=10$
3. Select Lower tail, since we want the $x$ value corresponding to a lower tail probability (less than)
4. Click OK

(b) If the top $2 \%$ of students will get an A, find the cutoff of getting an A.

We want to find the $x$ value such that $P(X>x)=0.02$, i.e., $2 \%$ of grades above what value or $98 \%$ of grades below what value.

Approach 1: upper tail probability, find the $x$ value such that $P(X>x)=0.02$.

1. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Normal quantiles
2. In "Normal Quantiles" window, put $q$ in Probabilities, $\mu$ in Mean, and $\sigma$ in Standard deviation. In this question, $q=0.02, \mu=70, \sigma=10$
3. Select Upper tail, since we want the $x$ value corresponding to an upper tail probability (greater than)
4. Click OK

Approach 2: lower tail probability, find the $x$ value such that $P(X<x)=0.98$.
Note that $2 \%$ of grades above what value $=98 \%$ of grade below what value. That is
$P(X>x)=0.02$ is that same as $1-P(X>x)=1-0.02 \Rightarrow \boldsymbol{P}(\boldsymbol{X}<\boldsymbol{x})=\mathbf{0 . 9 8}$

## 1. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Normal quantiles

2. In "Normal Quantiles" window, put $q$ in Probabilities, $\mu$ in Mean, and $\sigma$ in Standard deviation. In this question, $q=0.98, \mu=70, \sigma=10$
3. Select Lower tail, since we want the $x$ value corresponding to a lower tail probability (less than)
4. Click OK
The cutoff of $A$ is 90.54 . Students get a grade above 90.54 will get an A.


### 3.3 Generate Simple Random Samples from a Certain Distribution

### 3.3.1 Setting a Seed

Although you can let the software choose a random seed prior to generating simple random samples, examples that require the generation of simple random samples in the manual will require you to set a given seed that is provided for you. This allows the output in the manual examples to match what you get as you work through them. Setting a seed retires meticulous input to R.

You must set your desired seed every time you do a new problem!

Instructions are below for setting a seed of 1234.
Approach 1 (fastest, but you must be meticulously accurate, and it is easy to mess up):
Type the command set.seed(1234) in the R Script box (not in the Output box!!!), then click "Submit" (do not hit "Enter", it will not work). The command line will be executed and appear in the Output box.

Make sure there are no characters in front of your set.seed(1234) command and that the command is typed flush against the left side of the R Script box in a new line all by itself. See below.


Approach 2: tedious and kind of mission impossible.
Drop down Distributions $\rightarrow$ Set random number generator seed. A box appears with a suggested seed. Your box may have a different suggested seed.


Move the two boxes together to get as close to 1234 as you can. The closest I can get is 1191 . The closest number you can get may be different.


Click carefully, as many times as necessary, in the grey bar directly beside the boxes to move the seed number you have there to 1234 . This is very tedious. Again, you must set the seed to the given seed each time you do a problem.


Once succeed, click OK.

### 3.3.2 Generate Simple Random Sample from a Normal Distribution

Suppose we want to generate $\mathrm{n}=5$ observations from a normal distribution with mean $\mu=70$ and standard deviation $\sigma=10$. We set a seed of 1234 . We call the one dataset Normaln5 since the sample size is 5 and we are doing only 1 set (of samples of size 5 ).

1. Type set.seed(1234) in the $\mathbf{R}$ Script box (on its own line and flush against the left side of the box). Click Submit.
2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Sample from normal distribution...
3. In the "Sample from Normal Distribution" window, perform the following. Enter name of data set (say Normaln5), put $\mu$ in Mean, and $\sigma$ in Standard deviation, number of samples in Number of samples (rows), and the sample size $n$ in Number of observations (columns). In this question, $\mu=70, \sigma=10$, we only want one simple random sample, with sample size $n=5$.
4. Select Sample means under Add to Data Set. It will store the sample mean of the sample in the last column. Click OK.
5. Select Normaln5 under Data set to make it as active data set
6. Click View data set to view the sampled data

We can also generate $K$ sets of simple random samples of size $n$ by setting the value of Number of observations (columns) to be $K$. For example, if we want to generate three simple random samples of size 5 , we would follow the steps 1 to 6 above (including setting the seed to 1234) and put 3 in Number of samples (rows) and 5 in Number of observations (columns). I named it Normaln5k3.


3.3.3 Generate Simple Random Sample from an Exponential Distribution

An exponential distribution is an extremely right skewed continuous distribution which is widely used to model the lifetime of products. The density function of exponential distribution is given by:

$$
f(x)=\frac{1}{\lambda} e^{-\frac{x}{\lambda}}, x>0, \text { with } e \approx 2.718
$$

denoted as $X \sim \operatorname{Exp}(\lambda)$ where $\lambda$ is the mean (expected value) of $X$. One property of an exponential distribution is the mean and standard deviation both equal $\lambda$, i.e., $\mu=\sigma=\lambda$.

Suppose the survival time of liver cancer patients, $X$, follows an exponential distribution with mean and standard deviation 5 years, i.e., $\mu=\lambda=5, \sigma=\lambda=5$.
(a) Generate 10000 observations from an exponential population distribution with mean $\lambda=5$ or rate $\frac{1}{\lambda}=\frac{1}{5}=0.2$. Use the seed 1235 and save the data in the file "Exponentialn1000".
(b) Draw a histogram using those 10000 observations. With 10000 observations, this sample histogram provides an excellent approximation of an exponential population distribution with mean 5 .
(c) Calculate the sample mean and sample standard deviation and compare them with the population mean and standard deviation.

1. Type set.seed(1235) in the $R$ Script box (on its own line and flush against the left side of the box). Click Submit.
2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Exponential distribution $\rightarrow$ Sample from exponential distribution...
3. In the "Sample from Exponential Distribution" window, type "Exponentialn10000" in Enter name of data set, put 0.2 in Rate, 10000 in Number of samples (rows), and 1 in Number of observations (columns).
4. Click OK
5. Select Exponentialn10000 under Data set to make it as active data set
6. Click View data set to view the sampled data. The samples are stored in the column "obs", the data set has one column and 10000 rows.
7. Graphs $\rightarrow$ Histogram
8. Select "obs" and click OK.


## 8. Statistics $\rightarrow$ Summaries $\rightarrow$ Numerical Summaries

9. In the Numerical Summaries window, select "obs" and click Statistics
10. Check "Mean", "Standard Deviation", "Interquartile Range" and "Quantiles".


Outputs

| mean | sd | IQR | $0 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $100 \%$ | $n$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4.92683 | 4.913667 | 5.328878 | 0.0007534213 | 1.447858 | 3.431467 | 6.776736 | 51.99725 | 10000 |



## Lab 4 Distribution of the sample mean \& Central Limit Theorem

In this lab, we are going to investigate the distribution of the sample mean $\bar{X}$ by generating samples with different sample sizes from different population distributions. The central limit theorem states that when the sample size $n$ is large enough (rule of thumb: $n \geq 30$ ), the sample mean $\bar{X}$ is approximately normally distributed regardless of the population distribution. We can understand the central limit theorem by simulation.

### 4.1 Obtain the Distribution of the Sample Mean From a Certain Distribution

1. Take a simple random sample of size $n$ from a certain distribution.
2. Calculate the sample mean $\bar{x}$.
3. Suppose the population size is $N$ (i.e., there are $N$ individuals in the population), so there are $N C_{n}$ ( $N$ choose $n$ ) distinct samples. One sample will generate one value of the sample mean $\bar{x}$.
4. Drawing a histogram on those $N C_{n} \bar{x}$-values gives the distribution of the sample mean $\bar{X}$ for sample size $n$.
5. If $N C_{n}$ is too large for us to consider all possible samples, we can generate a sufficiently large number of samples, say 10000, to approximate the distribution of the sample mean $\bar{X}$.

For the distribution of the sample mean $\bar{X}$ with sample size $n$, we have the following conclusions:

- The mean of the sample mean $\bar{X}$ equals the population mean $\mu$; that is

$$
\mu_{\bar{X}}=\mu .
$$

- The standard deviation of the sample mean $\bar{X}$ equals the population standard deviation $\sigma$ divided by the square root of the sample size; that is

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} .
$$

These two conclusions are always true for any population distribution and for any sample size $n$.
We discuss the shape of the distribution of the sample mean $\bar{X}$ in two cases:

1. When the population distribution (the distribution of the variable under consideration $X$ ) is normal, the sample mean $\bar{X}$ is exactly normally distributed regardless of the sample size $n$.
2. When the population distribution is not normal, but the sample size $n$ is large, the sample mean $\bar{X}$ is approximately normally distributed. This is guaranteed by the central limit theorem.

### 4.2 Distribution of the Sample Mean When the Population Distribution is Normal

Suppose a population consists of $N=100$ students and the variable of interest is the grade $X$. The histogram of the grades of these 100 students gives the population (or parent) distribution, the distribution of $X$. The mean and standard deviation of these 100 grades give the population mean and population standard deviation, respectively, as $\mu=70$ and $\sigma=10$. The normal QQ plot shows that the grade $X$ follows a normal distribution, since all the data points roughly lie on a straight line.


Let us examine the distribution of sample mean $\bar{X}$ with sample size $n=2,5,30$ respectively.
For each sample size $n$ (\# of observations (columns)), generate 10000 samples (\# of rows). Use the seed 5942 for each n . Calculate the sample mean $\bar{x}$ for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(5942) in the $R$ Script box (on its own line and flush against the left side of the box). Click Submit.
2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Normal distribution $\rightarrow$ Sample from normal distribution...
3. In the "Sample from Normal Distribution" window, type Normaln2 in Enter name of data set, put 70 in Mean, and 10 in Standard deviation, 10000 in Number of samples (rows), and 2 in Number of observations (columns)
4. Select Sample means under Add to Data Set, and the dataset will store the sample mean of the sample in the last column (labeled "mean").
5. Click OK
6. Select Normaln2 under Data set to make it as active data set
7. Click View data set to view the sampled data

| nill commmite |  |  |  | (1) Normalez |  | - | $\square$ | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| R Smimle from Normul Detrionom |  | -ax ex |  | Eargle:sengtes | 73.66091 | 75.78434 74.72257 |  |  |
| Erier name for dita set Normataz. |  |  |  | 01,53335 | 56,0552050.91303 | 73.01431 |  |
|  |  |  |  |  |  | $\begin{aligned} & \text { senghes } \\ & \operatorname{sang} 1+1 \end{aligned}$ | 77,90405 | 60,44094 |  |
|  |  |  |  | SArele 1 <br> mamisel | 78.10547 | 70.64399 | 73,42143 |  |
| Mean. | 70 |  |  | -4.ntice | e9.3E6sy | 01.00z32 | 45.15159 |  |
| Standaid deviation | 10 |  |  |  | 72.01812 | \$4.36981 | 80.75766 |  |
| Namber of mamples (rown) | 10000 |  |  | garmies | 65,95870 | 53.83459 | 62.85604 |  |
| Number of cobservstions fcolumas) |  |  |  | 7xru 1*5 | $\begin{aligned} & \text { €T, } 47400 \\ & 01,2.0163 \end{aligned}$ | -56.9746E | 47,22437 |  |
|  |  |  |  | (9at1-10 | $02,20163$ | 39,45437 | 70.56009 |  |
| Add to Dias Set |  |  |  | - | 83.55028 | 66.52 6 18 | 75.09822 |  |
| 财5ampy means |  |  |  | gunitets | 86.12 2\%? | 80.11561 | 73.12214 |  |
| 7-5ample sems |  |  |  | 92mp151\% | 68.93562 | 65.26sgs | 56.60230 |  |
| tusample suns |  |  |  | 5anmiels | 49,41223 | 80.80493 | 65,10860 |  |
| UTSample stancard deviations |  |  |  | $5 \operatorname{sen}^{\text {cheta }}$ | 60,13656 | 56.24347 | 63,15002 |  |
|  |  |  |  | K+mit-1T | 78.04695 | 32,1474.5 | 79,09730 |  |
|  |  |  |  | - | $\begin{aligned} & \text { es.0ncu\# } \\ & 83.85500 \end{aligned}$ | $\begin{aligned} & 54.64533 \\ & 59.87265 \end{aligned}$ | 63.54016 |  |
| (9) Heip S Seset | - $0 \times$ | 26 Cancel | 1+ Apply | Humplyiy | $\begin{aligned} & 83.85500 \\ & 66.69172 \end{aligned}$ | $59.87265$ | 21.86\$89 72.07065 |  |

## 8. Graphs $\rightarrow$ Histogram

9. Select "mean" and click OK.

## 10. Statistics $\rightarrow$ Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics
12. Check "Mean", "Standard Deviation"
13. Repeat steps 1-12 for sample size $n=5$ and $n=30$ in "Sample from Normal Distribution"
window). For each repetition of the steps, type set.seed(5942) in the R Script box and click submit. Use
the file names Normaln5 and Normaln30. Never write over a file.


Findings:

- The mean of the sample mean is always very close to the population mean $\mu=70$ regardless of the sample size $n$. The difference is because we did not consider all possible samples of size $n$, but only 10000 samples.
- The standard deviation of the sample mean is always close to theoretical value $\frac{\sigma}{\sqrt{n}}=\frac{10}{\sqrt{n}}$. When $n=2, \frac{10}{\sqrt{n}}=\frac{10}{\sqrt{2}}=7.071$; when $n=5, \frac{10}{\sqrt{n}}=\frac{10}{\sqrt{5}}=4.472$; when $n=30, \frac{10}{\sqrt{n}}=\frac{10}{\sqrt{30}}=1.826$.
- The histogram of the sample mean has a bell-shaped curve regardless of the sample size $n=$ 2,5 , or 30 .


### 4.3 Distribution of the Sample Mean When the Population Distribution is Uniform



For each sample size $n$ (\# of columns), generate 10000 samples (\# of rows). Use the seed 3921 for each n. Calculate the sample mean $\bar{x}$ for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(3921) in the R Script box (on its own line and flush against the left side of the box). Click Submit.

## 2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Uniform distribution $\rightarrow$ Sample from uniform distribution...

3. In the "Sample from Uniform Distribution" window, type Uniformn2 in Enter name of data set, put 0 in Minimum and 10 in Maximum, 10000 in Number of samples (rows), and 2 in Number of observations (columns)
4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last column.
5. Click OK
6. Select Uniformn2 under Data set to make it as active data set
7. Click View data set to view the sampled data

8. Graphs $\rightarrow$ Histogram
9. Select "mean" and click OK.

## 10. Statistics $\rightarrow$ Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics
12. Check "Mean", "Standard Deviation"
13. Repeat steps 1-12 for sample size $n=5$, and $n=30$ (number of columns in "Sample from Uniform

Distribution" window). Type set.seed(3921) each time before sampling data from the uniform distribution. Use the file names Uniformn5 and Uniformn30. Never write over a file.


Findings:

- The mean of the sample mean is always very close to the population mean $\mu=5$ regardless of the sample size $n$. The difference is because we did not consider all possible samples of size $n$, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}}=\frac{2.89}{\sqrt{n}}$. When $n=2, \frac{\sigma}{\sqrt{n}}=\frac{2.89}{\sqrt{2}}=2.044$; when $n=5, \frac{\sigma}{\sqrt{n}}=\frac{2.89}{\sqrt{5}}=1.292$; when $n=30, \frac{\sigma}{\sqrt{n}}=\frac{2.89}{\sqrt{30}}=$ 0.528 .
- The population is symmetric, and the distribution of the sample mean is triangular when $n=2$. The distribution of the sample mean appears to be normal for $n=5$ and $n=30$.


### 4.4 Distribution of the Sample Mean When the Population Distribution is Exponential

 Suppose the survival time of liver cancer patients, $X$, follows an exponential distribution with mean and standard deviation 5 years, which is an extremely right skewed distribution.

Let's examine the distribution of sample mean $\bar{X}$ with sample size $n=2,5,30$ respectively. That is the distribution of the average of survival time of $n$ randomly selected patients.

For each sample size $n$ (\# of columns), generate 10000 samples (\# of rows). Use the seed 4518 for each n . Calculate the sample mean $\bar{x}$ for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(4518) in the $\mathbf{R}$ Script box (on its own line and flush against the left side of the box). Click Submit.

## 2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Exponential distribution $\rightarrow$ Sample from exponential distribution...

3. In the "Sample from Exponential Distribution" window, type the name of the data file you would like to store the sampled data in Enter name of data set (say Exponentialn2), put 0.2 in Rate, 10000 in Number of samples (rows), and 2 in Number of observations (columns)
4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last column.
5. Click OK
6. Select Exponentialn2 under Data set to make it as active data set
7. Click View data set to view the sampled data

| Fit R Commander |  |  |  |  | 96. 1 | (best | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | cartiel | 5,440956573 | 2,53845日T003 | 3,90967764 |
| R Sample from Exponential Cistribution |  | - | $\underline{x}$ | samples | 2. 507400169 | 5. 56699643298 | S.01025206 5.29850846 |
|  |  |  |  | mamile1 | 2.868410822 | 1.1492696904 | 2.00889576 |
| Enter nome for data set Exponentiain2 |  |  |  | 4atroles | 0.047030109 | 13.6403108471 | e. 54752040 |
|  |  |  |  | 30mple6 | 12,403500257 | 3.6463917524 | 9.02590600 |
|  |  |  |  | samples | 3.323937117 | 7.7453159096 | 5.53652651 |
| Rave | 02 |  |  | -umien | 10.959502698 | 5.6906145762 | 8.3250586 |
| Number of samples 0ows | 20000 |  |  | Estrice? | 9.904305395 | 10,8107283208 | 10,3574C696 |
| Number of obsenations (coumne) | 2 |  |  | sworied | 5.664461793 | 0.304016600 | 3.5246392 |
|  |  |  |  | wapleiz | 1.157832043 | 0.2645077440 | 0.71131989 |
| Add to Data Set |  |  |  | 5amitezin | 14.055699395 | 13,0283113110 | 13.03700530 |
| 0 Sample means |  |  |  | 5amplesg | 3.320324437 | 7,2000765424 | 5,26430045 |
| $\square$ Sample sutis |  |  |  | mammete | 2.259180367 | 14.1879551477 | 8.22056776 |
| [Tample standard deviations |  |  |  | fautele | 3. $\mathbf{3 9 3 8 0 0 9 7 1}$ | 5.9695450659 | 0.13167308 |
|  |  |  |  | 5saplert | 12,039664051 | 4.9757239705 | 0.60265401 |
|  |  |  |  | pomplers | 13.194357948 | $0.9511005157$ | 7.07273323 |
| (3) Help \% Reset | $\sqrt{1} \mathrm{OK}$ | 3 Cancel | Ch Appl | - | -. ${ }^{\text {a }}$ | 1,10asoliss | -.76eseras |

## 8. Graphs $\rightarrow$ Histogram

9. Select "mean" and click OK.

## 10. Statistics $\rightarrow$ Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics
12. Check "Mean", "Standard Deviation"
13. Repeat steps $1-12$ for sample sizes $n=5$ and $n=30$ (number of columns in "Sample from Exponential Distribution" window). Type set.seed(4518) and click submit each time before sampling data from the exponential distribution. Use the file names Exponentialn5 and Exponentialn30. Never write over a file.



Findings:

- The mean of the sample mean is always very close to the population mean $\mu=5$ regardless of the sample size $n$. The difference is because we did not consider all possible samples of size $n$, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}}=\frac{5}{\sqrt{n}}$. When $n=2, \frac{5}{\sqrt{n}}=\frac{5}{\sqrt{2}}=3.536$; when $n=5, \frac{5}{\sqrt{n}}=\frac{5}{\sqrt{5}}=2.236$; when $n=30, \frac{5}{\sqrt{n}}=\frac{5}{\sqrt{30}}=0.913$.
- The population is extremely right skewed, and the distribution of the sample mean is still right skewed for the relatively small sample sizes of $n=2$ and 5 . But it is roughly normal when sample size $n \geq 30$.


### 4.5 Distribution of the Sample Mean When the Population Distribution is Ch-Square

 The Chi-square distributions form a family of right skewed distributions where a parameter called "degrees of freedom" determines where the peak of the distribution is and how skewed the distribution is. The mean of the Chi-square distribution is equal to its number of degrees of freedom. The variance of a Chi-square distribution is equal to two times the number of its degrees of freedom. This distribution is used in Goodness of Fit Tests and in Tests of Independence (both of which we will work with later in the course) and is a distribution that can characterize magnetic resonance imaging data.Suppose the random variable $X$, follows a chi-square distribution with 5 degrees of freedom. So, it has a mean $\mu=5$ and standard deviation $\sigma=\sqrt{\sigma^{2}}=\sqrt{2 \times 5}=\sqrt{10}=3.162278$ (to 6 decimals). The density curve of the distribution is shown below.


Let's examine the distribution of sample mean $\bar{X}$ with sample size $n=2,5,30$ respectively.

For each sample size $n$ (\# of columns), generate 10000 samples (\# of rows). Use the seed 6292 for each $n$. Calculate the sample mean $\bar{x}$ for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample mean.

1. Type set.seed(6292) in the $R$ Script box (on its own line and flush against the left side of the box). Click Submit.

## 2. Distributions $\rightarrow$ Continuous distributions $\rightarrow$ Chi-squared distribution $\rightarrow$ Sample from chi-squared distribution...

3. In the "Sample from ChiSquared Distribution" window, type the name of the data file you would like to store the sampled data in Enter name of data set (say ChiSquaredn2), put 5 in Degrees of Freedom, 10000 in Number of samples (rows), and 2 in Number of observations (columns)
4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last column.
5. Click OK
6. Select ChiSquareln2 under Data set to make it as active data set
7. Click View data set to view the sampled data

| (RR Smmpletrom ChEquated Dintribution |  |  |  | $\times$ |  | obs 1 | obs2 | mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enter name for data set Chisquaredn2 |  |  |  |  | samplel | 5.68106194 | 4.77234434 | 5.2267031 |
|  |  |  |  |  | sample2 | 4.73580853 | 7.40927762 | 6.0725431 |
| Degrees of fieedom <br> Number of samples (rows) <br> Number of observations (columns) |  | 5 |  |  | sample3 | 4.15914720 | 14.33996952 | 9.2495584 |
|  |  | 10000 |  |  | sample 4 | 10.88703746 | 3.25710097 | 7.0720692 |
|  |  | 2 |  |  | sample6 | 5.32430279 | 3.75938455 | 4.5418437 |
| Add to Deta Set:Sample meansSample rumsSample standand deviations |  |  |  |  | sample7 | 10.26503708 | 4.04548377 | 7.1552604 |
|  |  |  |  |  | sample8 | 8.92435691 | 3.16552320 | 6.0449401 |
|  |  |  |  |  | sample9 | 4.31090156 | 7.82563774 | 6.0682697 |
|  |  |  |  |  | samplel0 | 10.68592406 | 1.59953616 | 6.1427301 |
|  |  |  |  |  | samplell | 0.51222535 | 5.62373076 | 3.0679781 |
|  |  |  |  |  | samplel2 | 3.72966417 | 7.80984745 | 5.7697558 |
|  |  |  | * Cancel |  | samplel3 | 4.83443099 | 2.70608942 | 3.7702602 |
| (c) Help | 4) Reset | 49 co |  | P Apply | samplel4 | 2.15811269 | 13.81511981 | 7.9866162 |
|  |  |  |  |  | samplel5 | 4.17480605 | 3.30743015 | 3.7411181 |
|  |  |  |  |  | sample16 | 4.40274201 | 3.10031383 | 3.7515279 |

## 8. Graphs $\rightarrow$ Histogram

9. Select "mean" and click OK.

## 10. Statistics $\rightarrow$ Summaries

11. In the "Numerical Summaries" window, select "mean" and click Statistics
12. Check "Mean", "Standard Deviation"
13. Repeat steps $1-12$ for sample sizes $n=5$ and $n=30$ (number of columns in "Sample from ChiSquared Distribution" window). Type set.seed(6292) and click submit each time before sampling from the chi-square distribution. Use the file names Chisquaredn5 and Chisquaredn30. Never write over a file.



Findings:

- The mean of the sample mean is always very close to the population mean $\mu=5$ regardless of the sample size $n$. The difference is because we did not consider all possible samples of size $n$, but only 10000 samples.
- The standard deviation of the sample mean is always close to the theoretical value $\frac{\sigma}{\sqrt{n}}=\frac{\sqrt{2 \times 5}}{\sqrt{n}}$. When $n=2, \frac{\sqrt{10}}{\sqrt{n}}=\frac{3.162278}{\sqrt{2}}=2.236$; when $n=5, \frac{\sqrt{10}}{\sqrt{n}}=\frac{3.162278}{\sqrt{5}}=1.414$; when $n=30, \frac{\sqrt{10}}{\sqrt{n}}=$ $\frac{3.162278}{\sqrt{30}}=0.577$.
- The population is quite right skewed, and the distribution of the sample mean is still right skewed for the relatively small sample sizes of $n=2$ and 5 . But it is roughly normal when sample size $n \geq 30$.


### 4.6 Central Limit Theorem For the Sample Mean

The Central Limit Theorem (CLT) states that when the sample size $n$ is large enough, the sample mean $\bar{X}$ is approximately normally distributed, regardless of the distribution of the variable under consideration (the population distribution).

Note that:

- The central limit theorem is about the shape of the sample mean $\overline{\boldsymbol{X}}$. It is the random variable $\bar{X}$ that will be normally distributed if the sample size $n$ is large enough.
- What constitutes a large enough value of $n$ is depends on the shape of the population distribution. If the population distribution, the distribution of $X$, is symmetric, $n \geq 5$ might be large enough to claim that the sample mean $\bar{X}$ is normally distributed; if the distribution of $X$ is not too extremely skewed, $n \geq 30$ should be enough; if the population is very skewed, we might need $n \geq 100$ (see the central limit theorem for proportion in the next section).


### 4.7 Central Limit Theorem For the Sample Proportion

Recall that the population mean $\mu=\frac{\sum x_{i}}{N}$, where $N$ is the population size (number of individuals in the population), is a population parameter used to describe the population. The population proportion

$$
p=\frac{\# \text { of individuals having a certain attribute }}{\text { population size }}=\frac{\# \text { of successes }}{N}
$$

is another parameter used to describe the population.
For example, the proportion of female students at MacEwan is defined as

$$
p=\frac{\# \text { of female students at MacEwan }}{\text { total number of students at MacEwan }}=\frac{\# \text { of successes }}{N},
$$

where picking a female student is regarded as a success event.
Just as the sample mean $\bar{x}=\frac{\sum x_{i}}{n}$ is used to estimate the population mean $\mu$, the sample proportion $\hat{p}$ which is defined as:

$$
\hat{p}=\frac{\# \text { of individuals having a certain attribute in the sample }}{\text { sample size }}=\frac{\# \text { of successes in the sample }}{n}
$$

is used to estimate the population proportion $p$.
Inference on the population mean $\mu$ is based on the distribution of the sample mean $\bar{X}$. Similarly, inference on the population proportion $p$ is based on the distribution of the sample proportion $\hat{p}$.

Population proportion is defined as:

$$
p=\frac{\# \text { of individuals having a certain attribute }}{\# \text { of individuals in thepopulation }}=\frac{\# \text { of successes }}{N} .
$$

Population proportion can be regarded as a special population mean if we let the variable of interest be an indicator variable as follows:

$$
x_{i}= \begin{cases}1 & \text { if the } i \text { th individual has the attribute (a success) } \\ 0 & \text { if the ith individual does not have the attribute. }\end{cases}
$$

Then the population proportion can be rewritten as:

$$
p=\frac{\# \text { of individuals having a certain attribute }}{\# \text { of individuals in thepopulation }}=\frac{\# \text { of successes }}{N}=\frac{\sum X_{i}}{N}
$$

The variable of interest $X$ has only two possible values: 1 if the individual has the attribute and 0 if not. If we randomly select one individual, the probability that this individual has the attribute is $p$.

As a result, the probability distribution of $X$ is:

| $x$ | 1 | 0 |
| :---: | :---: | :---: |
| $P(X=x)$ | $p$ | $1-p$ |

with a population mean and population standard deviation:

$$
\begin{gathered}
\mu=\sum x P(X=x)=1 \times p+0 \times(1-p)=p \\
\sigma=\sqrt{\sum x^{2} P(X=x)-\mu^{2}}=\sqrt{1^{2} \times p+0^{2} \times(1-p)-\mu^{2}}=\sqrt{p-p^{2}}=\sqrt{p(1-p)}
\end{gathered}
$$

When we take a simple random sample of size $n$, the proportion of individuals in the sample who have the specific attribute is the sample proportion (which can be regarded as a special sample mean $\bar{x}$ ).

$$
\hat{p}=\frac{\# \text { of individuals having a certain attribute in the sample }}{\text { sample size }}=\frac{\# \text { of successes in the sample }}{n}=\frac{\sum x_{i}}{n}=\bar{x}
$$

with $x_{i}=1$ if the individual has the attribute and 0 if not.

Therefore, the sampling distribution of the sample proportion $\hat{p}$ has the following properties:

- Center: the mean of the sample proportion $\hat{p}$ equals the population mean $\mu$; that is

$$
\mu_{\hat{p}}=\mu=p
$$

- Spread: the standard deviation of the sample proportion $\hat{p}$ equals the population standard deviation $\sigma$ divided by the square root of the sample size; that is

$$
\sigma_{\hat{p}}=\frac{\sigma}{\sqrt{n}}=\frac{\sqrt{p(1-p)}}{\sqrt{n}}=\sqrt{\frac{p(1-p)}{n}}
$$

These two results above are always true for any sample size $n$.

- Shape: The population distribution is non-normal. By the central limit theorem (CLT), however, $\hat{p}$ is approximately normal if $n$ is large enough. The thumb of rule is to guarantee both $n p \geq 5$ and $n(1-p) \geq 5$, i.e., $n=\max \left\{\frac{5}{p}, \frac{5}{1-p}\right\}$, the larger value of $\frac{5}{p}$ and $\frac{5}{1-p}$. Some textbooks require both $n p \geq 10$ and $n(1-p) \geq 10$.


## Central limit theorem for the sample proportion:

If the sample size $n$ (rule of thumb: $n p \geq 5$ and $n(1-p) \geq 5$ ) is large enough, the sample proportion $\hat{p}$ is approximately normally distributed.

Suppose the population proportion is $p=0.05$. By the rule of thumb, a sample size of at least

$$
n=\max \left\{\frac{5}{p}, \frac{5}{1-p}\right\}=\max \left\{\frac{5}{0.05}, \frac{5}{1-0.05}\right\}=\max \{100,5.26\}=100
$$

is required to make the sample proportion $\hat{p}$ be normally distributed. A larger sample size $n$ is required to make the sample proportion $\hat{p}$ to be approximately normally distributed when the population proportion is either closer to 0 or 1 .
We can generate data from the population distribution $X=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
with probability $p=0.05$ with probability $1-p=0.95$,
which is a special binomial distribution with number of trials $n=1$ and probability of success $p=0.05$.

For this population proportion distribution (where the attribute occurs with a probability of 0.05 ), we will investigate the sampling distribution of the sample proportion $\hat{p}$ with a sample size of $n=$ $50,100,200,1000$ respectively. That is the distribution of the average number of individuals out of $n$ randomly selected individuals who have a certain attribute.

For each sample size $n$ (\# of columns), generate 10000 samples (\# of rows) sequence of 0 s and 1 s . Set the seed 59744 in each case. Calculate the sample mean for each sample by calculating the average of each row and store the value in the last column of the data file. Draw a histogram on the last column to obtain the distribution of the sample proportion.

1. Type set.seed(59744) in the $\mathbf{R}$ Script box (on its own line and flush against the left side of the box). Click Submit.
2. Distributions $\rightarrow$ Discrete distributions $\rightarrow$ Binomial distribution $\rightarrow$ Sample from binomial distribution...
3. In the "Sample from Binomial Distribution" window, type the name of the data file you would like to store the sampled data in Enter name of data set (say Binomialn50), put 1 in Binomial trials, 0.05 in Probability of success, 10000 in Number of samples (rows), and 50 in Number of observations (columns)
4. Select Sample means under Add to Data Set, it will store the sample proportion of the sample in the last column. Click OK.
5. Select Binomialn50 under Data set to make it as active data set
6. Click View data set to view the sampled data

7. Graphs $\rightarrow$ Histogram
8. Select "mean" and click OK.
9. Statistics $\rightarrow$ Summaries
10. In the "Numerical Summaries" window, select "mean" and click Statistics
11. Check "Mean", "Standard Deviation"
12. Repeat steps 1-11 for sample size $n=100,200,1000$ (number of columns in "Sample from

Binomial Distribution" window)


The following figures shows the sampling distribution of the sample proportion with different sample size $n=50,100,200$ and 1000.


Findings:

- The mean of the sample proportion is always very close to the population proportion $p=0.05$ regardless of the sample size $n$. The difference is because we did not consider all possible samples of size $n$, but only 10000 samples.
- The standard deviation of the sample proportion is always close to the theoretical value $\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.05(1-0.05)}{n}}$. When $n=50, \sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.05(1-0.05)}{50}}=0.0308$; when $n=100$, $\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.05(1-0.05)}{100}}=0.0218$; when $n=200, \sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.05(1-0.05)}{200}}=0.0154$; when $n=1000, \sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.05(1-0.05)}{1000}}=0.0069$
- The population is extremely right skewed, and the distribution of the sample proportion is still right skewed for relatively large sample sizes $n=50$. It is still slightly right skewed when $n=$ 100 , even though $n=100$ should large enough according to the rule of thumb. But it is roughly normal when sample size $n=200$ and 1000 .

Recall that the central limit theorem tells us that the sample mean $\bar{X}$ will be approximately normally distributed when the sample size n is large enough. The rule of thumb is $n \geq 30$. However, how large n is large enough to make the sample mean $\bar{X}$ be normally distributed depends on how far the population distribution departs from a normal distribution; the further the population distribution is away from a normal distribution, the larger the sample size n is required. If the population distribution is continuous and not extremely skewed, $n=30$ should be large enough; however, if the population distribution is discrete (like the Bernoulli distribution for sample proportion), a much larger n is required, say $\mathrm{n}=200$ or more.

## Lab 5 Confidence Interval and Hypothesis Tests for One Mean

There are two types of statistics: descriptive and inferential statistics. We will focus on inferential statistics hereafter. Inferential statistics include estimation and hypothesis testing. Estimation is to estimate the value of a population parameter; hypothesis testing is to test whether a statement about the value of a population parameter is true or false. This lab illustrates how to obtain a confidence interval and conduct a hypothesis test for the population mean $\mu$ based on one simple random sample.

A general form for a confidence interval for a population parameter is
point estimate $\pm$ error $=$ point estimate $\pm$ mulitplier $\times$ Standard Error of the estimator.
General steps to set up the hypotheses:

1. Look for the key words, write down what we want to claim under the alternative $H_{a}$.
2. Take the opposite of the alternative $H_{a}$ to obtain the null $H_{0}$. Depending on the purpose of the hypothesis test, there are three choices for $H_{a}$ :

| Two tailed | Right (upper) tailed | Left (lower) tailed |
| :---: | :---: | :---: |
| $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |
| "differ", "change" | "more than", "increase" | "less than", "decrease" |

Depending on whether the population standard deviation $\sigma$ is known or not, we can use the one-sample $z$ test and interval or the one-sample $t$ test and interval.

### 5.1 One-Sample $\boldsymbol{Z}$ Test and Interval When the Population Standard Deviation is Known

 Use the one-sample $z$ test and $z$ interval when the population standard deviation $\sigma$ is known. The assumptions and steps to conduct a one-sample $z$ test and $z$ interval are as follows.
## Assumptions:

1. A simple random sample (SRS)
2. Normal population or large sample size ( $n \geq 30$ )
3. The population standard deviation $\sigma$ is known

## Steps:

1. Set up the hypotheses:

| $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
| :---: | :---: | :---: |
| $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |

2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $z_{o}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$.
4. Find the P -value or rejection region:

|  | $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |
| P-value | $2 P\left(Z \geq\left\|z_{o}\right\|\right)$ | $P\left(Z \geq z_{o}\right)$ | $P\left(Z \leq z_{o}\right)$ |
| Rejection region | $Z \geq z_{\alpha / 2}$ or $Z \leq-z_{\alpha / 2}$ | $Z \geq z_{\alpha}$ | $Z \leq-z_{\alpha}$ | $z_{\alpha / 2}$ is the $z$ value for which $\mathrm{P}\left(Z>z_{\alpha / 2}\right)=\alpha / 2$

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $z_{o}$ falls in the rejection region.
6. Conclusions.

A corresponding $(1-\alpha) \times 100 \%$ one-sample $z$ confidence interval is given by

|  | Two-sided Interval | Upper Tailed Interval | Lower Tailed Interval |
| :--- | :---: | :---: | :---: |
|  | $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
|  | $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |
| $(\mathbf{1}-\boldsymbol{\alpha}) \times \mathbf{1 0 0} \% \mathbf{C l}$ | $\left(\bar{x}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ | $\left(\bar{x}-z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$ | $\left(-\infty, \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$ |
| Decision | Reject $\boldsymbol{H}_{\mathbf{0}}$ if $\mu_{0}$ is outside the interval |  |  |

Interpretation of the confidence interval: we can be $(1-\alpha) \times 100 \%$ confident that the population mean $\mu$ is within the interval.

### 5.2 One-Sample $\boldsymbol{t}$ Test and Interval When the Population Standard Deviation is Unknown

Given that the population is normal OR the sample size $n$ is large enough, the sample mean $\bar{X}$ can be regarded to be normally distributed, i.e., $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

The population standard deviation $\sigma$ is usually unknown and can be estimated by the sample standard deviation $s$.

When the population distribution is normal, the standardized variable $Z=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$.
When the population distribution is normal, the studentized variable
$t=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t$ distribution with $d f=n-1$.
The assumptions and steps to conduct a one-sample $t$ test and $t$ interval for one population mean $\mu$ are as follows.

## Assumptions:

1. A simple random sample (SRS)
2. Normal population or large sample size ( $n \geq 30$ )
3. The population standard deviation $\sigma$ is unknown

## Steps:

1. Set up the hypotheses:

| $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
| :---: | :---: | :---: |
| $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |

2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $t_{o}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$ with $d f=n-1$.
4. Find the $P$-value or rejection region:

|  | $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |
| P-value | $2 P\left(t \geq\left\|t_{o}\right\|\right)$ | $P\left(t \geq t_{o}\right)$ | $P\left(t \leq z_{o}\right)$ |
| Rejection region | $t \geq t_{\alpha / 2}$ or $t \leq-t_{\alpha / 2}$ | $t \geq t_{\alpha}$ | $t \leq-t_{\alpha}$ |

$t_{\alpha / 2}$ is the $t$ value for which $\mathrm{P}\left(t>t_{\alpha / 2}\right)=\alpha / 2$.
5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $t_{o}$ falls in the rejection region.
6. Conclusions.

|  | Two-sided Interval for <br> Two-sided Test | Upper Tailed Interval <br> for Right Tailed Test | Lower Tailed Interval <br> for Left Tailed Test |
| :--- | :---: | :---: | :---: |
|  | $H_{0}: \mu=\mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu \geq \mu_{0}$ |
|  | $H_{a}: \mu \neq \mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu<\mu_{0}$ |
| $(\mathbf{1}-\boldsymbol{\alpha}) \times \mathbf{1 0 0} \% \mathbf{C l}$ | $\left(\bar{x}-t_{\frac{\alpha}{\alpha}} \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha} \frac{s}{2} \frac{s}{\sqrt{n}}\right)$ | $\left(\bar{x}-t_{\alpha} \frac{s}{\sqrt{n}}, \infty\right)$ | $\left(-\infty, \bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}\right)$ |
| Decision | Reject $\boldsymbol{H}_{\mathbf{0}}$ if $\boldsymbol{\mu}_{\mathbf{0}}$ is outside the interval |  |  |

Interpretation of the confidence interval: we can be $(1-\alpha) \times 100 \%$ confident that the population mean $\mu$ is within the interval.

NUANCE: Students should note that although the Central Limit Theorem tells us that for any unknown population distribution shape with large n , the sampling distribution of $\mathrm{Z}=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ is approximately normal, it actually does not tell us that for any unknown population distribution shape with large $\mathrm{n}, \mathrm{t}=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}$ is approximately normal or approximately a t distribution.

However, it is sensible to think that s will be close to sigma (a good estimate) when n is large, and therefore that t values calculated will be close to z values when n is large. So it is not untoward to think that $\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$ values will be approximately $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ values for large n and thus the sampling distribution will indeed have a normal shape (regardless of the parent population shape).
We also note that a $t$ distribution with $n-1$ degrees of freedom is approximately normal for large $n$.
Some textbooks suggest that students doing problems that entail finding the test statistic $t=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}$ proceed to calculate p-values and rejection region critical values using the standard normal distribution, Z . This is useful because t tables are not comprehensive when $\mathrm{n}>=30$.

Other textbooks suggest that students doing problems that entail finding the test statistic $\mathrm{t}=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}$ use the t distribution with $n-1$ df to calculate $p$-values and rejection region critical values when $n$ is large. This is generally just fine because these values can be readily calculated online.

The software $R$ Commander finds $p$ values and critical values for at distribution with $n-1$ degrees of freedom when you use it to do a single sample $t$ test.

Example: A machine fills beer into bottles whose volume is supposed to be 341 ml , but the exact amount varies from bottle to bottle. We randomly pick 50 bottles and actual volume of each bottle is given in the data file. The sample mean volume is 338.428 ml and sample standard deviation $s=5.238$ ml.

| 343.8 | 339.8 | 347.3 | 348.4 | 338.1 | 333.1 | 345.8 | 342.7 | 341.0 | 336.5 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 338.6 | 337.8 | 339.2 | 341.7 | 339.0 | 343.0 | 333.4 | 332.8 | 337.1 | 338.0 |
| 338.8 | 331.3 | 343.6 | 331.8 | 338.4 | 345.3 | 333.7 | 344.4 | 337.0 | 347.0 |
| 336.0 | 341.4 | 330.5 | 328.7 | 340.8 | 337.4 | 336.9 | 326.4 | 344.3 | 329.2 |
| 334.4 | 339.6 | 341.5 | 334.2 | 333.0 | 337.8 | 343.3 | 337.4 | 346.4 | 333.8 |

Note: the data were generated from a normal distribution with mean 339 and standard deviation 5 with random number generator seed 4067 , rounded to one decimal place.

For this problem, please download the dataset beer.xlsx from online. Then import it into R commander and called it beer, say.
(a) Test at the $5 \%$ significance level whether the machine is NOT working properly.
(b) Obtain a $95 \%$ confidence interval for the population mean volume. Interpret the interval.
(c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)?
(d) Test at the $1 \%$ significance level whether the mean volume is below 341 ml .

Check the assumptions:

- We have a simple random sample.
- We have a large sample with sample size $n=50>30$; therefore, it does not matter whether the population is normal or not. However, we can draw a normal probability ( $\mathrm{Q}-\mathrm{Q}$ ) plot, a histogram, and a boxplot to check the normality of the sample data. For your imported dataset called beer, use the Graphs $\rightarrow$ Histogram, Graphs $\rightarrow$ boxplot, and Graphs $\rightarrow$ Quantile-comparison plot commands. All the graphs of the summarized sample data shown below suggest (or do not contradict) that the sample data was taken from a normal population.

Please note that the best way to check the normality assumption is a normal Q-Q plot, especially when the sample size is not very large. In general, a boxplot cannot show whether the data are from a normal population. A histogram can be misleading and cannot show whether the data have a bell-shaped distribution when the sample size is not large enough.

- The population standard deviation $\sigma$ is unknown.

The assumptions for a one-sample $t$ test are met.


To run a one-sample $t$ test in R Commander:

1. Statistics $\rightarrow$ Means $\rightarrow$ Single-sample $\mathbf{t}$ test
2. In the "Single-Sample t-Test" window, pick "Volume" as the variable. Choose the alternative hypothesis: two-tailed (!=mu0). Specify the hypothesized value "mu=341", i.e., $\mu_{0}=341$. Specify the "Confidence Level: $\mathbf{0 . 9 5}$ ", i.e., the significance level $\alpha=0.05$.
3. Click OK

```
One Sample t-test
```

data: Volume
$\mathrm{t}=-3.4718$, df $=49, \mathrm{p}$-value $=0.001089$
alternative hypothesis: true mean is not equal to 341
95 percent confidence interval:
336.9392339 .9168
sample estimates:
mean of x
338.428
(a) Test at the $5 \%$ significance level whether the machine is NOT working properly.

If the machine is working properly, $\mu=341 \mathrm{ml}$; if the machine is not working properly, $\mu \neq 341 \mathrm{ml}$. The steps for a one-sample $t$ test are:

- Hypotheses. $H_{0}: \mu=341 \mathrm{ml}$ versus $H_{a}: \mu \neq 341 \mathrm{ml}$
- The significance level is $\alpha=0.05$.
- Compute the value of the test statistic: $t_{o}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=-3.4718$, with $d f=n-1=49$
- The P-value $=2 P\left(t \geq\left|t_{o}\right|\right)=2 P(t \geq 3.4718)=0.001089$
- Since P-value $=0.001089<0.05(\alpha)$, reject $H_{0}$.
- Conclusion: At the 5\% significance level, the data provide sufficient evidence that the machine is NOT working properly.
(b) Obtain a 95\% confidence interval for the population mean volume. Interpret the interval. A 95\% confidence interval for the population mean volume is $(336.9392,339.9168) \mathrm{ml}$.
Interpretation: we can be $95 \%$ confident that the population mean volume $\mu$ is somewhere between 336.9392 ml and 339.9168 ml .
(c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)? Yes. In part (a), we reject $H_{0}$ and claim that the machine is not working properly, i.e., $\mu \neq 341 \mathrm{ml}$. In part (b), the interval does not contain 341 ; therefore, we can be $95 \%$ confident that $\mu \neq 341 \mathrm{ml}$ and it supports the conclusion of the hypothesis test in part (a).
(d) Test at the $1 \%$ significance level whether the mean volume is below 341 ml .

- Hypotheses. $H_{0}: \mu \geq 341 \mathrm{ml}$ versus $H_{a}: \mu<341 \mathrm{ml}$
- The significance level is $\alpha=0.01$.
- Compute the value of the test statistic: $t_{o}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=-3.4718$, with $d f=n-1=49$
- $\quad$ The P-value $=P\left(t<t_{o}\right)=P(t<-3.3718)=P(t \geq 3.4718)=0.0005447$
- $\quad$ Since $P$-value $=0.0005447<0.01(\alpha)$, reject $H_{0}$.
- Conclusion: At the $1 \%$ significance level, the data provide sufficient evidence that the mean volume is below 341 ml .
(e) Obtain a confidence interval corresponding to the test in part (d). Does the interval support the conclusion of the test in part (d)?

A left-tailed test at the 1\% significant level corresponds to a 99\% lower-tailed confidence interval. A 99\% lower-tailed confidence interval for the population mean volume is $\left(-\infty, \bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}\right)=(-\infty, 340.2096)$. Interpretation: we can be $99 \%$ confident that the population mean volume $\mu$ is somewhere below 340.2096 ml . Since the entire interval is below 341 , we can claim that $\mu<341 \mathrm{ml}$. This supports the conclusion of the hypothesis test in part (d).

### 5.3 Relation Between Confidence Interval and Hypothesis Tests

## Recall:

Two-sided confidence intervals correspond to two-tailed tests, upper-tailed confidence intervals correspond to right-tailed tests, and lower-tailed confidence intervals correspond to left-tailed tests.

A $(1-\alpha) \times 100 \%$ two-sided $t$ confidence interval is given in the form $\left(\bar{x}-t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x}+t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right)$.
A $(1-\alpha) \times 100 \%$ upper-tailed $t$ confidence interval is given by $\left(\bar{x}-t_{\alpha} \frac{s}{\sqrt{n}}, \infty\right)$ and the number $\bar{x}-$ $t_{\alpha} \frac{s}{\sqrt{n}}$ is called the lower bound of the interval.

A $(1-\alpha) \times 100 \%$ lower-tailed $t$ confidence interval is given by $\left(-\infty, \bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}\right)$ and the number $(\bar{x}+$ $\left.t_{\alpha} \frac{s}{\sqrt{n}}\right)$ is called the upper bound of the interval.

Remember:

We can use the confidence intervals to make conclusions about hypothesis tests: reject the null hypothesis $H_{0}$ at the significance level $\alpha$ if the corresponding $(1-\alpha) \times 100 \%$ confidence interval does not contain the hypothesized value $\mu_{0}$.

Confidence interval ( Cl ) and hypothesis testing ( HT ) should give consistent results: we should not reject $H_{0}$ at the significance level $\alpha$ if the corresponding $(1-\alpha) \times 100 \%$ confidence interval contains the hypothesized value $\mu_{0}$.

## Lab 6 Confidence Interval \& Hypothesis Tests for Two Means

Suppose we have two populations with means $\mu_{1}$ and $\mu_{2}$ respectively. This lab covers how to obtain a confidence interval and conduct a hypothesis test for the difference between the two population means, i.e., $\mu_{1}-\mu_{2}$, using R commander. Depending on whether the two samples are independent or paired, we have a two-sample $t$ test or a paired $t$ test, respectively.

### 6.1 Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval Based on Two Independent Samples

The two-sample $t$ test can be used to test hypotheses on the difference between two population means. Depending on whether the two population standard deviations ( $\sigma_{1}$ and $\sigma_{2}$ ) are equal or not, we use the non-pooled and pooled two sample $t$ test and $t$ interval, respectively. Minor advantages of the pooled $t$ test are that it provided a slightly narrower confidence interval, a slightly more powerful test, and a simpler formula for the degrees of freedom. However, a pooled $t$ test is valid only when the two population standard deviations are identical; otherwise, it gives invalid results. Therefore, we recommend using the non-pooled $t$ test unless we are very confident that $\sigma_{1}=\sigma_{2}$ (which is very difficult to verify).

### 6.1.1 Non-pooled Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval

## Assumptions:

1. Simple random samples;
2. Two samples are independent;
3. Normal populations or large sample sizes (rule of thumb: $n_{1} \geq 30, n_{2} \geq 30$ ).

## Steps:

1. Set up the hypotheses:

| Two tailed test | Right (upper) tailed test | Left (lower) tailed test |
| :---: | :---: | :---: |
| $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
| $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |

Note that $\Delta_{0}$ can be zero or any value you would like to test.
2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $t_{o}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ with $d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$ rounded down to the nearest integer, i.e., take the integer part.
4. Find the $P$-value or rejection region:

|  | $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |
| P-value | $2 P\left(t \geq\left\|t_{o}\right\|\right)$ | $P\left(t \geq t_{o}\right)$ | $P\left(t \leq t_{o}\right)$ |
| Rejection region | $t \geq t_{\alpha / 2}$ or $t \leq-t_{\alpha / 2}$ | $t \geq t_{\alpha}$ | $t \leq-t_{\alpha}$ |

5. Decision: reject the null $H_{0}$ if P -value $\leq \alpha$ or if $t_{o}$ falls in the rejection region.
6. Conclusions.

A $(1-\alpha) \times 100 \%$ two-sample $t$ confidence interval for $\mu_{1}-\mu_{2}$ is:

|  | Two-sided Interval for <br> Two-sided Test | Upper Tailed Interval <br> for Right Tailed Test | Lower Tailed Interval <br> for Left Tailed Test |
| :--- | :---: | :---: | :---: |
|  | $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
| Interval | $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |
|  | $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ | $\left(\left(\bar{x}_{1}-\bar{x}_{2}\right)-t_{\alpha} \sqrt{\left.\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}, \infty\right)}\right.$ | $\left(-\infty,\left(\bar{x}_{1}-\bar{x}_{2}\right)+t_{\alpha} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right)$ |
| Decision |  |  |  |

Example: Two-sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval Assuming Standard Deviations Not Equal
Some students attend class regularly, but some do not. An instructor wants to compare the class average for those who attend lectures regularly $\left(\mu_{1}\right)$ with those who do not $\left(\mu_{2}\right)$. Simple random samples are randomly selected from attendees and non-attendees. Their attending status (Attend/NonAttend) and final grade (in \%) are given in the following table (grades to 2 decimals places). Data are stored in "example_twosample_grade.xlsx", which can be found online, and has 13 decimal places for grades. Note that practising students should download the online file and use it, as typing or copying/pasting the data shown below to their own Excel file and using it (with grades to 2 decimal places) will not yield the answers found in the descriptions and inference done below.

| Attend | 69.68 | Attend | 77.56 | Attend | 65.03 | Attend | 89.30 | Attend | 87.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Non-Attend | 61.21 | Non-Attend | 64.76 | Non-Attend | 65.04 | Attend | 68.54 | Non-Attend | 35.62 |
| Attend | 80.43 | Attend | 66.01 | Attend | 57.08 | Attend | 71.24 | Attend | 96.51 |
| Attend | 80.97 | Attend | 78.10 | Attend | 95.86 | Attend | 49.19 | Non-Attend | 65.81 |
| Non-Attend | 60.74 | Attend | 95.54 | Attend | 83.32 | Non-Attend | 39.30 | Attend | 82.82 |
| Attend | 83.34 | Attend | 67.50 | Attend | 74.53 | Non-Attend | 78.46 | Attend | 83.00 |
| Attend | 72.03 | Attend | 93.30 | Attend | 55.24 | Attend | 81.23 | Non-Attend | 42.94 |
| Non-Attend | 77.11 | Attend | 85.03 | Attend | 76.27 | Non-Attend | 80.67 | Attend | 80.14 |
| Attend | 75.49 | Non-Attend | 82.50 | Attend | 74.76 | Non-Attend | 64.32 | Attend | 79.47 |
| Attend | 75.03 | Non-Attend | 54.10 | Attend | 61.58 | Attend | 47.77 | Attend | 72.49 |
| Attend | 90.86 | Non-Attend | 78.71 | Attend | 62.91 | Attend | 93.26 | Non-Attend | 85.07 |
| Attend | 86.87 | Non-Attend | 47.67 | Non-Attend | 51.30 | Non-Attend | 70.68 | Non-Attend | 55.65 |
| Attend | 96.32 | Attend | 76.51 | Attend | 77.06 | Attend | 68.40 | Attend | 72.66 |
| Attend | 50.62 | Attend | 85.97 | Attend | 80.24 | Non-Attend | 39.39 | Attend | 90.25 |
| Attend | 83.13 | Attend | 85.19 | Attend | 70.16 | Attend | 68.12 | Attend | 87.75 |
| Non-Attend | 72.80 | Attend | 78.40 | Attend | 66.06 | Attend | 86.51 | Non-Attend | 55.38 |
| Attend | 71.22 | Non-Attend | 67.34 | Non-Attend | 42.39 | Non-Attend | 87.30 | Non-Attend | 80.88 |

(a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data.
(b) Test at the $1 \%$ significance level whether those who attend lectures have a higher average, i.e., $\mu_{1}>\mu_{2}$ or $\mu_{1}-\mu_{2}>0$.
(c) Obtain a confidence interval for the difference between the class average for attendees and nonattendees, $\mu_{1}-\mu_{2}$, that corresponds to the test in part (b).
(d) Based on the interval obtained in part (c), can we claim that the class average of attendees is at least $5 \%$ higher than that of the non-attendees? How about $10 \%$ higher?

## Solutions:

(a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data. We want to compare the grade between attendants and non-attendants. Note that grade is a quantitative continuous variable. Hence, to compare the two groups numerically, we use the fivenumber summary ( $\min , Q_{1}$, median, $Q_{3}$, $\max$ ) , mean and standard deviation for each group, while graphically, we use a side-by-side histogram and/or a side-by-side boxplot.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Numerical Summaries...
2. In the "Numerical Summaries" window, select "Grade" as the variable.
3. Click "Summarize by groups...", in the "Groups" window, choose "Attend" as the grouping variable. Click OK
4. Click "Statistics", check "Mean", "Standard Deviation", "Interquartile Range", and "Quantiles", click OK.


|  | mean | sd | IQR | $0 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $100 \%$ | data:n |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Attend | 76.92475 | 11.82723 | 15.35319 | 47.76920 | 69.79938 | 77.83021 | 85.15257 | 96.51480 | 58 |
| Non-Attend | 63.22769 | 15.48007 | 25.08418 | 35.62145 | 52.69786 | 64.76214 | 77.78204 | 87.29546 | 27 |

Here are the findings from the numerical summaries:

1. There are $n_{1}=58$ attendees and $n_{2}=27$ non-attendees.
2. The sample mean for the attendees is $\bar{x}_{1}=76.925 \%$. The sample mean for the non-attendees is $\bar{x}_{2}=63.228 \%$, which is $13.697 \%$ lower than the mean of the attendees. The attendees also have a larger median (50\% quantile) than their non-attendees counterpart, $77.830 \%$ versus
$64.762 \%$ (that is; the median for the non-attendees is $13.068 \%$ lower than the median for the attendees).
3. The sample standard deviation for the attendees is $s_{1}=11.827 \%$ and the sample standard deviation for the non-attendees is $s_{2}=15.480 \%$. There is a larger variation in grade among non-attendees. This can be also found through the IQR. The IQR is $15.353 \%$ for attendees and 25.084\% for non-attendees.
4. The attendees have a larger maximum grade than non-attendees, $96.514 \%$ versus $87.295 \%$; the attendees also have a higher minimum grade, $47.769 \%$ versus $35.621 \%$.

All the findings above can be also seen from the plots created below.


(b) Test at the $\mathbf{1 \%}$ significance level whether those who attend lectures have a higher average, i.e., $\mu_{1}>\mu_{2}$ or $\mu_{1}-\mu_{2}>0$.
Use a two-sample $t$ test since the samples (the attendees and the non-attendees) are independent.

1. Statistics $\rightarrow$ Means $\rightarrow$ Independent Sample $t$-Test...
2. In the "Independent Sample $t$-Test" window, select "Attend" as the grouping variable and "Grade" as the response variable, since we want to compare the grades between attendants and non-attendants.
3. Click "Options", in the "Options" window, choose "Difference>0" as the Alternative Hypothesis, because we want to test whether $\mu_{1}>\mu_{2}$ or the difference $\mu_{1}-\mu_{2}>0$. Type 0.99 in the box under "Confidence Level", since the significance level $\alpha=0.01$ which corresponds to a confidence level $1-\alpha=1-0.01=0.99$. Check "No" under "Assume equal variances" for a non-pooled two-sample $t$ test. Click OK.
4. Click OK

```
            Welch Two Sample t-test
data: Grade by Attend
t = 4.077, df = 40.68, p-value = 0.0001032
alternative hypothesis: true difference in means is greater than 0
99 percent confidence interval:
    5.561483 Inf
sample estimates:
    mean in group Attend mean in group Non-Attend
    76.92475 63.22769
```


## Steps:

- Hypotheses. $H_{0}: \mu_{1}-\mu_{2} \leq 0 \mathrm{ml}$ versus $H_{a}: \mu_{1}-\mu_{2}>0$
- The significance level is $\alpha=0.01$.
- Compute the value of the test statistic: $t_{0}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=4.077$, with degrees

$$
\text { of freedom } d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}=40.68
$$

- The P-value $=P\left(t>t_{o}\right)=P(t>4.077)=0.0001032$
- $\quad$ Since $P$-value $=0.0001032<0.01(\alpha)$, reject $H_{0}$.
- Conclusion: At the $1 \%$ significance level, the data provide sufficient evidence that those who attend lectures have a higher average.
(c) Obtain a confidence interval for the difference between the class average for attendees and nonattendees $\mu_{1}-\mu_{2}$ corresponding to the test in part (b).

For a right-tailed test at significance level $\alpha=0.01$, the corresponding confidence interval is a $(1-\alpha) \times 100 \%=99 \%$ upper-tailed confidence interval. Based on the computer output above, a $99 \%$ confidence interval is

$$
\left(\left(\bar{x}_{1}-\bar{x}_{2}\right)-t_{\alpha} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}, \infty\right)=(5.5615, \infty)
$$

Interpretation: we can be $99 \%$ confident that the difference between the class average for attendees and non-attendees $\mu_{1}-\mu_{2}$ is at least $5.5615 \%$, i.e., we can be $99 \%$ confident that the class average for attendees is at least $5.5615 \%$ higher than that of the non-attendees.
(d) Based on the interval obtained in pat (c), can we claim that the class average of attendees is at least $5 \%$ higher than that of the non-attendees? How about 10\% higher?

We can claim that the class average of attendees is at least $5 \%$ higher than that of the nonattendees since the entire interval for $\mu_{1}-\mu_{2}$ is above $5 \%$, that is, $\mu_{1}-\mu_{2}>5$ with $\Delta_{0}=5$.

We can not claim that the class average of attendees is at least $10 \%$ higher than that of the nonattendees since the entire interval contains 10. Therefore, we do not have sufficient evidence to claim $\mu_{1}-\mu_{2}>10$ where $\Delta_{0}=10$.


$$
\mu_{1}-\mu_{2}>5.5615
$$

### 6.1.2 Pooled Two-Sample $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval

If the two population standard deviations are equal, i.e., $\sigma_{1}=\sigma_{2}=\sigma$, we can pool the two samples together to get a better estimate of the common standard deviation $\sigma$

$$
\hat{\sigma}=s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}}
$$

where the term $\left(n_{1}-1\right) s_{1}^{2}=\sum_{\text {sample } 1}\left(x-\bar{x}_{1}\right)^{2}$ is the variation of the data within sample 1 , and $\left(n_{2}-1\right) s_{2}^{2}=\sum_{\text {sample } 2}\left(x-\bar{x}_{2}\right)^{2}$ is the variation of the data within sample 2 . Recall that the standard deviation of $\bar{X}_{1}-\bar{X}_{2}$ is $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$. Thus, if $\sigma_{1}=\sigma_{2}=\sigma$, then $\sigma_{\bar{X}_{1}-\bar{X}_{2}}$ reduces to $\sqrt{\frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}=$ $\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$. Estimating $\sigma$ with $s_{p}$ leads to the pooled test statistic:

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t \text { distribution }
$$

with $d f=\left(n_{1}-1\right)+\left(n_{2}-1\right)=n_{1}+n_{2}-2$.
The assumption $\sigma_{1}=\sigma_{2}$ is very difficult to verify. Some textbooks suggest a rule of thumb: if the ratio of the larger to the smaller sample standard deviation is less than 2 , then the assumption is considered to be met, i.e., $\frac{\max \left\{s_{1}, s_{2}\right\}}{\min \left\{s_{1}, s_{2}\right\}}<2$. The assumptions and steps for a two-sample pooled $t$ test are as follows.

## Assumptions:

1. Simple random samples;
2. Two samples are independent;
3. Normal populations or large samples ( $n_{1} \geq 30, n_{2} \geq 30$ );
4. Equal standard deviation $\frac{\max \left\{s_{1}, s_{2}\right\}}{\min \left\{s_{1}, s_{2}\right\}}<2$.

## Steps:

1. Set up the hypotheses:

| Two tailed test | Right (upper) tailed test | Left (lower) tailed test |
| :---: | :---: | :---: |
| $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
| $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |

Note that $\Delta_{0}$ can be zero or any value you would like to test.
2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $t_{o}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\Delta_{0}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ with $d f=n_{1}+n_{2}-2$.
4. Find the P-value or rejection region:

|  | $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |
| P-value | $2 P\left(t \geq\left\|t_{o}\right\|\right)$ | $P\left(t \geq t_{o}\right)$ | $P\left(t \leq t_{o}\right)$ |
| Rejection region | $t \geq t_{\alpha / 2}$ or $t \leq-t_{\alpha / 2}$ | $t \geq t_{\alpha}$ | $t \leq-t_{\alpha}$ |

5. Decision: reject the null $H_{0}$ if P -value $\leq \alpha$ or $t_{o}$ falls in the rejection region.
6. Conclusions.

A $(1-\alpha) \times 100 \%$ two-sample pooled $t$ confidence interval for $\mu_{1}-\mu_{2}$ is:

|  | Two-sided Interval for <br> Two-sided Test | Upper Tailed Interval <br> for Right Tailed Test | Lower Tailed Interval <br> for Left Tailed Test |
| :--- | :---: | :---: | :---: |
|  | $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \Delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \Delta_{0}$ |
|  | $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$ |
| Interval | $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \times s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ | $\left(\left(\bar{x}_{1}-\bar{x}_{2}\right)-t_{\alpha} \times s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}, \infty\right)$ | $\left(-\infty,\left(\bar{x}_{1}-\bar{x}_{2}\right)+t_{\alpha} \times s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$ |
| Decision | Reject $\boldsymbol{H}_{\mathbf{0}}$ if $\boldsymbol{\Delta}_{\mathbf{0}}$ is outside the interval |  |  |

## Example: Pooled two-sample $\boldsymbol{t}$ Test and Interval

Is it reasonable to conduct a pooled two-sample $t$ test to test whether those who attend lectures have a higher average? If yes, conduct the test at the $1 \%$ significance level.

Since $\frac{\max \left\{s_{1}, s_{2}\right\}}{\min \left\{s_{1}, s_{2}\right\}}=\frac{\max \{11.827,15.480\}}{\operatorname{mix}\{11.827,15.480\}}=\frac{15.480}{11.827}<2$, it is reasonable to conduct a pooled two-sample $t$ test.

1. Statistics $\rightarrow$ Means $\rightarrow$ Independent Sample $\mathbf{t}$-Test...
2. In the "Independent Sample $\mathbf{t}$-Test" window, select "Attend" as the grouping variable and "Grade" as the response variable, since we want to compare the grades between attendants and nonattendants.
3. Click "Options", in the "Options" window, choose "Difference>0" as the Alternative Hypothesis. Type $\mathbf{0 . 9 9}$ in the box under "Confidence Level". Check "Yes" under "Assume equal variances" for a pooled two-sample $t$ test. Click OK.
4. Click OK

```
    Two Sample t-test
data: Grade by Attend
t = 4.4942, df = 83, p-value = 1.121e-05
alternative hypothesis: true difference in means is greater than 0
9 9 \text { percent confidence interval:}
    6.467476 Inf
sample estimates:
    mean in group Attend mean in group Non-Attend
                        76.92475 63.22769
```


## Steps:

- Hypotheses. $H_{0}: \mu_{1}-\mu_{2} \leq 0 \mathrm{ml}$ versus $H_{a}: \mu_{1}-\mu_{2}>0$
- The significance level is $\alpha=0.01$.
- Compute the value of the test statistic: $t_{o}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\Delta_{0}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=4.4942$, with degrees of freedom $d f=n_{1}+n_{2}-2=58+27-2=83$.
- The P-value $=P\left(t>t_{o}\right)=P(t>4.4942)=0.00001121$.
- Since P-value $=0.00001121<0.01(\alpha)$, reject $H_{0}$.
- Conclusion: At the $1 \%$ significance level, the data provide sufficient evidence that those who attend lectures have a higher average.

The corresponding $99 \%$ upper-tailed interval is $(6.4675, \infty)$. The result is very similar to that of a nonpooled two-sample $t$ test.

### 6.1.3 Non-Pooled Versus Pooled Two-Sample $\boldsymbol{t}$ Test

Now, it comes to the question: shall we use pooled or non-pooled t-test?
The advantages of the pooled $t$ test are:

- A much simpler formula to calculate the degrees of freedom;
- A slightly narrower confidence interval and a slightly more powerful test.

However, the pooled $t$ test is valid only when the standard deviations of two groups are the same; otherwise, the pooled method gives misleading results.

It is even harder to test whether the two standard deviations are equal or not. Therefore, we recommend using the non-pooled two-sample $t$ test by default; apply the pooled two-sample $t$ test only if you are very confident that the two standard deviations are the same.

### 6.2 Paired $\boldsymbol{t}$ Test and $\boldsymbol{t}$ Interval Based on Paired Sample

Two samples are considered paired if each observation in the first sample is related to one and only one observation in the second sample. A paired $t$ test and a paired $t$ interval are exactly a one-sample $t$ test and a one-sample $t$ interval on the paired differences respectively.

## Assumptions:

1. The paired difference $d_{i}, i=1, \cdots, n$ is a simple random sample (SRS) from all possible pairs
2. The paired differences follow a normal distribution or large number of pairs ( $n \geq 30$ )

## Steps:

1. Set up the hypotheses:

| $H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \delta_{0}$ |
| :---: | :---: | :---: |
| $H_{a}: \mu_{1}-\mu_{2} \neq \delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\delta_{0}$ |

Note: $\delta_{0}$ can be any value tested, in most cases $\delta_{0}=0$. Some textbooks state the hypotheses using $\mu_{d}=\mu_{1}-\mu_{2}$.
2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $t_{o}=\frac{\bar{d}-\delta_{0}}{s_{d} / \sqrt{n}}$ with degree of freedom $d f=n-1$, where $n$ is the number of pairs and

$$
\bar{d}=\frac{\sum d_{i}}{n}, s_{d}=\sqrt{\frac{\left(\sum d_{i}^{2}\right)-\frac{\left(\sum d_{i}\right)^{2}}{n}}{n-1}} .
$$

4. Find the $P$-value or rejection region:

|  | $H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \delta_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu_{1}-\mu_{2} \neq \delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\delta_{0}$ |
| P-value | $2 P\left(t \geq\left\|t_{o}\right\|\right)$ | $P\left(t \geq t_{o}\right)$ | $P\left(t \leq t_{o}\right)$ |
| Rejection region | $t \geq t_{\alpha / 2}$ or $t \leq-t_{\alpha / 2}$ | $t \geq t_{\alpha}$ | $t \leq-t_{\alpha}$ |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $t_{o}$ falls in the rejection region.
6. Conclusions.

A $(1-\alpha) \times 100 \%$ confidence interval for $\mu_{d}=\mu_{1}-\mu_{2}$ corresponding to a hypothesis test at the significance level $\alpha$ is:

|  | $H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \leq \delta_{0}$ | $H_{0}: \mu_{1}-\mu_{2} \geq \delta_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: \mu_{1}-\mu_{2} \neq \delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}>\delta_{0}$ | $H_{a}: \mu_{1}-\mu_{2}<\delta_{0}$ |
| $(1-\alpha) \times 100 \% \mathrm{Cl}$ | $\left(\bar{d}-\operatorname{ta}_{\frac{\alpha}{2}} \frac{s_{d}}{\sqrt{n}}, \bar{d}+t_{\frac{\alpha}{2}} \frac{s_{d}}{\sqrt{n}}\right)$ | $\left(\bar{d}-t_{\alpha} \frac{s_{d}}{\sqrt{n}}, \infty\right)$ | $\left(-\infty, \bar{d}+t_{\alpha} \frac{s_{d}}{\sqrt{n}}\right)$ |
| Decision | Reject $H_{0}$ if $\delta_{0}$ is outside the interval |  |  |

## Example: Paired $t$ Test and Paired $t$ Interval

Eleven people participate in a diet program, their weights in pounds before and after taking the program are listed below. Please download the file pair_diet.xlxs from online and import it into R commander.

| Before <br> (in Ib) | After <br> (in Ib) | Paired Differences <br> $\boldsymbol{d}_{\boldsymbol{i}}=$ Before - After |
| :---: | :---: | :---: |
| 130 | 100 | 30 |
| 140 | 115 | 25 |
| 160 | 140 | 20 |
| 110 | 115 | -5 |
| 120 | 120 | 0 |
| 150 | 130 | 20 |
| 160 | 130 | 30 |
| 100 | 110 | -10 |
| 180 | 140 | 40 |
| 200 | 150 | 50 |
| 130 | 120 | 10 |

(a) Test atthe $1 \%$ significance level whether the diet program is effective in reducing weight.
(b) Obtain a confidence interval corresponding to the test in part (a).
(c) Does the interval in part (b) support the conclusion in part (a)?
(d) Is it possible to claim that on average the diet program can reduce weight by more than 5 pounds? Explain why.
Check the assumptions:

1. We have a simple random sample in the paired differences.
2. We have eleven pairs, not a large number of pairs $(n<30)$. Therefore, we need to check whether the paired differences are taken from a normal population.

Draw a normal probability plot on the sample of paired differences and look for a straight line.

1. Import the data. Data $\rightarrow$ Import data $\rightarrow$ from Excel file pair_diet.xlsx (name it "diet")
2. Graphs $\rightarrow$ Quantile-comparison plot...

In the "Quantile-Comparison (QQ) Plot" window, choose "Difference" as the variable to plot. Click OK.


Since all the points roughly lie on a straight line, we can assume that the paired differences are from a normal population. Therefore, the assumptions for a paired $t$ test are satisfied.
(a) Test at the $1 \%$ significance level whether the diet program is effective in reducing weight.

1. Import the data. Data $\rightarrow$ Import data $\rightarrow$ from Excel file pair_diet.xlxs (name it "diet")
2. Statistics $\rightarrow$ Means $\rightarrow$ Paired $t$-Test...
3. In the "Paired t-Test" window, select "Before" as the First variable and "After" as the second variable, since we define the paired difference as Before-After.
4. Click "Options", in the "Options" window, choose "Difference>0" as the Alternative Hypothesis. Type 0.99 in the box under "Confidence Level". Click OK.
5. Click OK

Paired t-test
data: Before and After
$\mathrm{t}=3.3648$, $\mathrm{df}=10, \mathrm{p}$-value $=0.003592$
alternative hypothesis: true difference in means is greater than 0
99 percent confidence interval:
3.410302 Inf
3.410302 Inf
sample estimates:
mean of the differences
19.09091

## Steps:

- Hypotheses. $H_{0}: \mu_{B}-\mu_{A} \leq 0$ versus $H_{a}: \mu_{B}-\mu_{A}>0$.
- The significance level is $\alpha=0.01$.
- Compute the value of the test statistic: $t_{o}=\frac{\bar{d}-\delta_{0}}{s_{d} / \sqrt{n}}=3.3648$, with degrees of freedom $d f=$ $n-1=11-1=10$.
- The P-value $=P\left(t \geq t_{o}\right)=P(t \geq 3.3648)=0.003592$.
- Since P-value $=0.003592<0.01(\alpha)$, reject $H_{0}$.
- Conclusion: At the $1 \%$ significance level, the data provide sufficient evidence that the diet program is effective in reducing weight.
(b) Obtain a confidence interval corresponding to the test in part (a).

For a right-tailed test at significance level $\alpha=0.01$, the corresponding confidence interval should be a $99 \%$ upper-tailed interval, which is $(3.410302, \infty)$ from the computer output.
(c) Does the interval in part (b) support the conclusion in part (a)?

Yes. In part (a), we reject $H_{0}$ and claim that $\mu_{B}-\mu_{A}>0$. In part (b), since the interval does not contain $\delta_{0}=0$ and the entire interval is above 0 , we can claim that $\mu_{B}-\mu_{A}>0$ with $99 \%$ confidence, which supports the results obtained in part (b).
(d) Is it possible to claim that on average the diet program can reduce more than 5 pounds? Explain why.
Here we will test $H_{0}: \mu_{B}-\mu_{A} \leq \underbrace{5}_{\delta_{0}=5}$ versus $H_{a}: \mu_{B}-\mu_{A}>5$. Then $\delta_{0}=5$ in this question. The answer is "No", since $\delta_{0}=5$ is within the interval (3.410302, $\infty$ ). Therefore, we cannot reject $H_{0}: \mu_{B}-\mu_{A} \leq \underbrace{5}_{\delta_{0}=5}$ and claim that on average the diet program can reduce weight by more than 5 pounds.

## Lab 7 Inferences for Population Proportions

In this lab, we focus on inferences for another population parameter: the population proportion $p$. The population proportion is defined as the proportion (or percentage) of a population that have a specified attribute. For example, proportion of times that athletes wearing blue uniforms win the Judo games; proportion of customers who respond to the advertisement; proportion of women who suffer arthritis.

### 7.1 One-Proportion z Test \& Z Interval Based on One Sample

## Assumptions:

1. A simple random sample
2. Both $n p_{0}$ and $n\left(1-p_{0}\right)$ are at least 5 .

## Steps:

1. Set up the hypotheses:

| $H_{0}: p=p_{0}$ | $H_{0}: p \leq p_{0}$ | $H_{0}: p \geq p_{0}$ |
| :---: | :---: | :---: |
| $H_{a}: p \neq p_{0}$ | $H_{a}: p>p_{0}$ | $H_{a}: p<p_{0}$ |

2. State the significance level $\alpha$.
3. Compute the test statistic: $z_{o}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$ with $\hat{p}=\frac{x}{n}$ where x is the total successes in n observations.
4. Find the P -value or rejection region:

|  | $H_{0}: p=p_{0}$ | $H_{0}: p \leq p_{0}$ | $H_{0}: p \geq p_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: p \neq p_{0}$ | $H_{a}: p>p_{0}$ | $H_{a}: p<p_{0}$ |
| P-value | $2 P\left(Z \geq\left\|z_{o}\right\|\right)$ | $P\left(Z \geq z_{o}\right)$ | $P\left(Z \leq z_{o}\right)$ |
| Rejection region | $Z \geq z_{\alpha / 2}$ or $Z \leq-z_{\alpha / 2}$ | $Z \geq z_{\alpha}$ | $Z \leq-z_{\alpha}$ |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $z_{o}$ falls in the rejection region.
6. Conclusions.

A point estimate for the population proportion $p$ is the sample proportion $\hat{p}=\frac{x}{n}$. A $(1-\alpha) \times 100 \%$ confidence interval corresponding to a hypothesis test at the significance level $\alpha$ for the population proportion $p$ are as shown in the table.

|  | $H_{0}: p=p_{0}$ | $H_{0}: p \leq p_{0}$ | $H_{0}: p \geq p_{0}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: p \neq p_{0}$ | $H_{a}: p>p_{0}$ | $H_{a}: p<p_{0}$ |
| $(1-\alpha) \times 100 \% \mathrm{Cl}$ | $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ | $\left(\hat{p}-z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \infty\right)$ | $\left(-\infty, \hat{p}+z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ |
| Decision | Reject $H_{0}$ if $p_{0}$ is outside the interval |  |  |

## Example: One-Proportion z Test and z Interval

Revisit the data set about the effect of attending lecture on grades. There are two sections: ASO2 and ASO4. Some students attend lectures regularly and some do not in both sections. We are interested in the attendance rate.

| ASO2 | Attend | AS02 | Attend | ASO2 | Attend | ASO4 | Attend | ASO4 | Attend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASO2 | Non-Attend | ASO2 | Non-Attend | ASO2 | Non-Attend | AS04 | Attend | AS04 | Non-Attend |
| ASO2 | Attend | ASO2 | Attend | ASO2 | Attend | AS04 | Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Attend | ASO2 | Attend | AS04 | Attend | AS04 | Non-Attend |
| ASO2 | Non-Attend | ASO2 | Attend | ASO2 | Attend | ASO4 | Non-Attend | ASO4 | Attend |
| ASO2 | Attend | ASO2 | Attend | ASO2 | Attend | ASO4 | Non-Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Attend | ASO2 | Attend | ASO4 | Attend | ASO4 | Non-Attend |
| ASO2 | Non-Attend | ASO2 | Attend | ASO2 | Attend | ASO4 | Non-Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Non-Attend | ASO2 | Attend | ASO4 | Non-Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Non-Attend | ASO2 | Attend | ASO4 | Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Non-Attend | ASO2 | Attend | ASO4 | Attend | ASO4 | Non-Attend |
| ASO2 | Attend | ASO2 | Non-Attend | ASO2 | Non-Attend | ASO4 | Non-Attend | AS04 | Non-Attend |
| ASO2 | Attend | ASO2 | Attend | ASO4 | Attend | ASO4 | Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Attend | ASO4 | Attend | AS04 | Non-Attend | AS04 | Attend |
| ASO2 | Attend | ASO2 | Attend | ASO4 | Attend | AS04 | Attend | AS04 | Attend |
| ASO2 | Non-Attend | ASO2 | Attend | ASO4 | Attend | ASO4 | Attend | AS04 | Non-Attend |
| ASO2 | Attend | ASO2 | Non-Attend | ASO4 | Non-Attend | ASO4 | Non-Attend | ASO4 | Non-Attend |

Download attend_grade.xlsx from online. Import data ("attend_grade.xlsx") into R commander:

## Data $\rightarrow$ Import data $\rightarrow$ from Excel file... (name it "Attend")

The data set consists of eight variables (columns) and 85 instances (rows). The variable "Section" indicating whether the student is in ASO2 or ASO4, "Attend" indicating whether the student attends lectures regularly or not; "Midterm", "Homework", "LabA", "Labexam", "Finalexam", "Grade" are the student's grades in midterm exam, homework assignments, lab assignments, lab exam, final exam, and the final grade.

| R.RCommander | R Attend |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fie Edit Lata Statistics Grapis Models Distri |  | Section | Atrend | Midtera | \#immework | 1aha | tabexam | Finalexam | Grade |
| Import Excel | 1 | AS02 | Attend | 48.39 | 13.79 | 14.28 | 7.81 | 62.00 | 69.68 |
| Import Exce Duta Set | 2 | ASO2 | Non-Attend | 45.16 | B. 17 | 11.23 | 8.12 | 64.00 | 61.21 |
| Enter name of data set Attend | 3 | ASO2 | Attend | 72.58 | 14.15 | 15.13 | 7.81 | 72.00 | 80.43 |
| F7) Variable names in first row of sprearthheet | 4 | AS02 | Attend | 70.97 | 14.13 | 14.13 | 9.06 | 74.00 | 80.97 |
| Varable fames in first row ci sprensher | 5 | ASO2 | Non-Attend | 64.52 | 11.66 | 11.62 | 3.12 | 52.00 | 60.74 |
| + | 6 | ASO2 | Attend | 75.81 | 14.04 | 14.57 | 8.12 | 79.00 | 83.34 |
| (2) Convert character data to factors | 7 | ASO2 | Attend | 75.81 | 10.62 | 13.49 | 9.38 | 56.00 | 72.03 |
| Missing dala indicator: <emply cell> | 8 | ASO2 | Non-Attend | 53.23 | 12.46 | 14.39 | 10.00 | 77.00 | 77.11 |
|  | 3 | AS02 | Attend | 70.97 | 13.07 | 13.96 | 6.56 | 69.00 | 75.49 |
| (6) Help OK * Cancel | 10 | ASO2 | Attend | 79.03 | 12.19 | 15.51 | 9.38 | 52.00 | 75.03 |

(a) What is the overall attendance rate in the two sections?

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Frequency Distributions
2. In the "Frequency Distributions" window, choose "Attend" as the variable. Click OK.


There are $58+27=85$ students altogether in both sections and 58 students attend lectures regularly. Therefore, the overall attendance rate is $58 / 85=0.6824$ which is $68.24 \%$.
(b) Test at the $5 \%$ significance level whether the overall attendance rate is below $80 \%$.

1. Statistics $\rightarrow$ Proportions $\rightarrow$ Single-sample proportion test...
2. In the "Single-Sample Proportion Test" window, choose "Attend" as the variable.
3. Click "Options". In the "Options" window, choose "Population proportion<p0" as the Alternative Hypothesis. Specify the hypothesized value " $\mathrm{p}=0.8$ " under the "Null hypothesis". That is $p_{0}=0.8$. Type $\mathbf{0 . 9 5}$ in the box under "Confidence Level". Under "Type of Test", check "Normal approximation". Click OK.
4. Click OK.


1-sample proportions test without continuity correction

```
data: rbind(.Table), null probability 0.8
X-squared = 7.3529, df = 1, p-value = 0.003348
alternative hypothesis: true p is less than 0.8
95 percent confidence interval:
    0.0000000 0.7586904
sample estimates:
    p
0.6823529
```


## Steps:

- Hypotheses. $H_{0}: p \geq 0.8$ versus $H_{a}: p<0.8$.
- The significance level is $\alpha=0.05$.
- Compute the value of the test statistic: $z_{o}=-\sqrt{7.3529}=-2.71162$.

Note: the computer output provides the chi-square score $\mathbf{7 . 3 5 2 9}$ which is the square of the observed test statistic $\boldsymbol{z}_{\boldsymbol{o}}$.
We can double check that the test statistic $z_{o}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{\frac{58}{85}-0.8}{\sqrt{\frac{0.8(1-0.8)}{85}}}=-2.71163$.
Note that $z_{o}{ }^{2}=(-2.71163)^{2}=7.3529$ which is the chi-square score.

- The P-value $=P\left(Z \leq z_{o}\right)=P(Z \leq-2.7116)=0.003348$
- Since P-value $=0.003348<0.05(\alpha)$, reject $H_{0}$.
- Conclusion: At $5 \%$ significance level, the data provide sufficient evidence that overall attendance rate is below $80 \%$.
(c) Obtain a confidence interval corresponding to the test in part (b).

For a left-tailed test at the $5 \%$ significance level, the corresponding interval should be a $95 \%$ lowertailed interval, which is ( $0,0.7586904$ ) obtained from the computer output.
Interpretation: we can be $95 \%$ confident that the overall attendance rate is below 0.75869 , i.e., 75.869\%.
(d) Does the interval in part (c) support the conclusion in part (b)?

Yes. In part (b), we reject $H_{0}$ and claim that $p<0.8$. In part (c), since the interval does not contain $p_{0}=0.8$ and the entire interval is below 0.8 , we can claim that $p<0.8$ with $95 \%$ confidence, which supports the results obtained in part (c).

### 7.2 Two-Proportion z Test \& z Interval Based on Two Independent Samples

For independent samples of size $n_{1}$ and $n_{2}$ from two populations, a point estimate for the difference between two population proportions $\left(p_{1}-p_{2}\right)$ is the difference between the sample proportions ( $\hat{p}_{1}-\hat{p}_{2}$ ) where $\hat{p}_{1}=\frac{x_{1}}{n_{1}}, \hat{p}_{2}=\frac{x_{2}}{n_{2}}$, and x 1 and x 2 are the number of successes in their samples.

### 7.2.1 Two-Proportion Z Interval

## Assumptions:

1. Both samples are simple random samples from their own populations.
2. The two samples are independent.
3. Large samples, all the number of successes and the number of failures $x_{1}, n_{1}-x_{1}, x_{2}$, and $n_{2}-x_{2}$ are at least 5 .

A $(1-\alpha) \times 100 \%$ confidence interval for the difference between the population proportion $\left(p_{1}-p_{2}\right)$ is:

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}, \quad \hat{p}_{1}=\frac{x_{1}}{n_{1}}, \hat{p}_{2}=\frac{x_{2}}{n_{2}}
$$

where $z_{\alpha / 2}$ is the $z$ score such that the area to its right is $\frac{\alpha}{2}$ under the standard normal curve. This is a two-tailed interval.
$\mathrm{A}(1-\alpha) \times 100 \%$ upper-tail confidence interval is $\left(\left(\hat{p}_{1}-\hat{p}_{2}\right)-z_{\alpha} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}, \infty\right)$.
And a $(1-\alpha) \times 100 \%$ lower-tail confidence interval is $\left(-\infty,\left(\hat{p}_{1}-\hat{p}_{2}\right)+z_{\alpha} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}\right.$.

### 7.2.2 Two-Proportion Z Test

## Assumptions:

1. Both samples are simple random samples from their own populations.
2. The two samples are independent.
3. Large samples, all the number of successes and the number of failures $x_{1}, n_{1}-x_{1}, x_{2}$, and $n_{2}-x_{2}$ are at least 5 .

## Steps to perform a two-proportion $z$ test:

1. Set up the hypotheses:

| $H_{0}: p_{1}=p_{2}$ | $H_{0}: p_{1} \leq p_{2}$ | $H_{0}: p_{1} \geq p_{2}$ |
| :---: | :---: | :---: |
| $H_{a}: p_{1} \neq p_{2}$ | $H_{a}: p_{1}>p_{2}$ | $H_{a}: p_{1}<p_{2}$ |

2. State the significance level $\alpha$.
3. Compute the value of the test statistic:

$$
z_{o}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}_{p}\left(1-\hat{p}_{p}\right)} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \text { with } \hat{p}_{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}, \hat{p}_{1}=\frac{x_{1}}{n_{1}}, \hat{p}_{2}=\frac{x_{2}}{n_{2}}
$$

4. Find the $P$-value or rejection region:

|  | $H_{0}: p_{1}=p_{2}$ | $H_{0}: p_{1} \leq p_{2}$ | $H_{0}: p_{1} \geq p_{2}$ |
| :--- | :---: | :---: | :---: |
|  | $H_{a}: p_{1} \neq p_{2}$ | $H_{a}: p_{1}>p_{2}$ | $H_{a}: p_{1}<p_{2}$ |
| P-value | $2 P\left(Z \geq\left\|z_{o}\right\|\right)$ | $P\left(Z \geq z_{o}\right)$ | $P\left(Z \leq z_{o}\right)$ |
| Rejection region | $Z \geq z_{\alpha / 2}$ or $Z \leq-z_{\alpha / 2}$ | $Z \geq z_{\alpha}$ | $Z \leq-z_{\alpha}$ |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $z_{o}$ falls in the rejection region.
6. Conclusions.

## Example: Two-Proportion Z Test and Z Interval

Revisit the data set attend_grade.xlsx (which you imported into $R$ in the previous section) about the effect of attending lecture on grades. There are two sections: ASO2 and AS04. Some students attend lectures regularly and some do not in both sections. We are interested in the attendance rate.
(a) What are the attendance rates in sections ASO2 and ASO4 respectively?

1. Statistics $\rightarrow$ Contingency tables $\rightarrow$ Two-way table...
2. In the "Two-Way Table" window, choose "Section" as the row variable and "Attend" as the column variable.
3. Check "Statistics". In the "Statistics" window, select "Row percentage" under "Compute Percentages". Click OK.
4. Click OK.

Note that we chose "Section" as the row variable and we want the percentage of attendees within each section; therefore, we need to calculate the row percentages.


| Frequency table: |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Attend |  |  |  |  |
| Section Attend Non-Attend |  |  |  |  | $\hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{34}{46}=0.7391 \text { which is } 73.91 \% .$ |
| AS02 | 34 24 | 12 15 |  |  |  |
| AS04 | 24 | 15 |  |  |  |
| Row percentages: |  |  |  |  | The attendance rate in ASO4 is $\hat{p}_{1}=\frac{x_{2}}{n_{2}}=\frac{24}{39}=0.6154$ which is $61.54 \%$. |
|  |  |  |  |  |  |
| Section | Attend | Non-Attend | Total | Count |  |
| AS02 | 73.9 | 26.1 | 100 | 46 |  |
| AS04 | 61.5 | 38.5 | 100 | 39 |  |

(b) Test at the $1 \%$ significance level whether the attendance rates are different in both sections.

1. Statistics $\rightarrow$ Proportions $\rightarrow$ Two-sample proportion test...
2. In the "Two-Sample Proportion Test" window, choose "Section" as the row variable and "Attend" as the column variable. Click "Options". In the "Options" window, choose "Two Sided" as the Alternative Hypothesis. Type 0.99 in the box under "Confidence Level". Under "Type of Test", check "Normal approximation". Click OK.
3. Click OK.

```
                    2-sample test for equality of proportions without continuity
                    correction
data: .Table
X-squared = 1.4911, df = 1, p-value = 0.222
alternative hypothesis: two.sided
99 percent confidence interval:
    -0.1371712 0.3846628
sample estimates:
        prop 1 prop 2
0.7391304 0.6153846
```


## Steps:

- Hypotheses. $H_{0}: p_{1}=p_{2}$ versus $H_{a}: p_{1} \neq p_{2}$, where $p_{1}$ is the attendance rate of section ASO2 and $p_{2}$ is the attendance rate of section ASO4.
- The significance level is $\alpha=0.01$.
- Compute the value of the test statistic: $z_{o}=\sqrt{1.4911}=1.2211$.

Note: the computer output provides the chi-square score 1.4911 which is the square of the observed test statistic $Z_{o}$.
We can double check that the test statistic:
$z_{O}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}_{p}\left(1-\hat{p}_{p}\right)} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{0.7391304-0.6153846}{\sqrt{0.682353(1-0.682353)} \sqrt{\frac{1}{46}+\frac{1}{39}}}=1.2211$, with
$\hat{p}_{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{34+24}{46+39}=0.682353, \hat{p}_{1}=\frac{x_{1}}{n_{1}}=\frac{34}{46}=0.7391304, \hat{p}_{2}=\frac{x_{2}}{n_{2}}=\frac{24}{39}=0.6153846$.

- The P-value $=2 P\left(Z \geq\left|z_{o}\right|\right)=2 P(Z \geq 1.2211)=0.222$.
- Since P-value $=0.222>0.01(\alpha)$, we cannot reject $H_{0}$.
- Conclusion: At the $1 \%$ significance level, the data do not provide sufficient evidence that the attendance rates are different in both sections.
(c) Obtain a confidence interval corresponding to the test in part (b).

For a two-tailed test at $1 \%$ significance level, the corresponding interval is a $99 \%$ two-sided interval for $p_{1}-p_{2}$ which is $(-0.1371712,0.3846628)$ based on the computer output.

Interpretation: We can be $99 \%$ confident that $p_{1}-p_{2}$ is somewhere between -0.1372 and 0.3847 . That means, we can be $99 \%$ confident that the attendance rate of ASO2 is between $13.72 \%$ lower to $38.47 \%$ higher than that of ASO4.

We can double check that a $99 \%$ confidence for $p_{1}-p_{2}$ is

$$
\begin{aligned}
& \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}=(0.7391304-0.6153846) \pm \\
& 2.575 \sqrt{\frac{0.7391304(1-0.7391304)}{46}+\frac{0.6153846(1-0.6153846)}{39}}=(-0.1370872,0.3845788)
\end{aligned}
$$

This is a little bit off due to rounding.
(d) Does the interval in part (c) support the conclusion in part (b)?

Yes. In part (b), we cannot reject $H_{0}$ and claim that the two attendance rates are significantly different. In part (c), since the interval contains 0 , there is no significant difference between the attendance rates in both sections.

## LAB 8 Chl-SQUARE TESTS

Lab 7 covers $\mathbf{z}$ test and $\mathbf{z}$ interval for one and two proportions. Chi-square tests should be used when more than two proportions are compared.

### 8.1 Chl-Square Goodness-of Fit Test for one Categorical or Discrete Variable

The chi-square goodness-of-fit test can be applied to a categorical variable or a discrete quantitative variable that has only finitely possible values. The objective of a chi-square goodness-of-fit test is to test whether the variable follows the probability distribution specified in the null hypothesis $H_{0}$.

## Assumptions:

1. All expected frequencies are at least 1.
2. At most $20 \%$ of the expected frequencies are less than 5 .
3. Simple random sample (if you need to generalize the conclusion to a larger population)

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in those cells larger.

Before running a chi-square goodness-of-fit test, we should first check the assumptions. Calculate the expected frequency for each possible value of the variable using $E=n p$, where $n$ is the total number of observations and $p$ is the relative frequency (or probability) specified in the null hypothesis. Check whether the expected frequencies satisfy assumptions 1 and 2 . If not, consider combining some cells.

## Steps to perform a chi-square goodness-of-fit test:

1. Set up the hypotheses:

$$
H_{0} \text { : The variable has the specified distribution }
$$

$H_{a}$ : The variable does not have the specified distribution
2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $\chi_{o}^{2}=\sum_{\text {all cells }} \frac{(O-E)^{2}}{E}$ with $d f=k-1$.
4. Find the P -value or rejection region based on the $\chi^{2}$ curve with $d f=k-1$.

| P-value | $P\left(\chi^{2} \geq \chi_{o}^{2}\right)$ | the area to the right of $\chi_{o}^{2}$ under the curve |
| :--- | :--- | :--- |
| Rejection region | $\chi^{2} \geq \chi_{\alpha}^{2} \quad$ the region to the right of $\chi_{\alpha}^{2}$, the area is $\alpha$ |  |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $\chi_{o}^{2}$ falls in the rejection region.
6. Conclusions.

## Example: Chi-square goodness-of-fit test

According to the results of the Federal election in 2015, 31.9\% of votes supported Conservative, 39.5\% supported Liberal, $19.7 \%$ supported New Democratic (NDP), 4.7\% supported Bloc Québécois, and 3.4\% supported Green (data from Wikipedia).

Federal proportions are summarized in this table.

| Parties | Conservative | Green | Liberal | NDP | Bloc Québécois | Others |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Proportion $(p)$ | 0.319 | 0.034 | 0.395 | 0.197 | 0.047 | 0.008 |

Thirty-seven students who voted in my Stat151 class responded to the online survey and their vote counts are summarized in the following table:

| Parties | Conservative | Green | Liberal | NDP | Bloc Québécois | Others |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Counts | 9 | 2 | 17 | 6 | 0 | 3 |

Test at the $5 \%$ significance level whether the class has a different preference pattern from the whole nation (2015 election).

We check the assumptions. The expected frequencies (counts $E=n p=37 \times p$ ) for the outcome cells when $\mathrm{n}=37$ are:

| Parties | Conservative | Green | Liberal | NDP | Bloc Québécois | Others |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Proportion $(p)$ | 0.319 | 0.034 | 0.395 | 0.197 | 0.047 | 0.008 |
| Expected Counts | 11.803 | 1.258 | 14.615 | 7.289 | 1.739 | 0.296 |

Here we have one outcome cell with an expected count below 1, which violates an assumption. Furthermore, with $k=6$ outcome cells, we wish to assume at most $6 \times 0.2=1.2$ cells with expected counts less than 5, and we have three cells less than 5. Also, our survey was taken in Alberta and no Bloc Québécois run in Alberta (although a student with a home riding of Quebec might have still voted that way).

We would like to do a test, so we need to combine some cells. Federally, we combine the cells "Green", "Bloc Québécois" and "Others" above and name the combined party "Others". In our sample data set, we also merge "Green" and "Others" and name the combined party "Others". This will lead us to have k $=4$ outcomes for our federal population and $k=4$ cell outcomes for our survey sample data, as follows.

As a result, the expected and observed frequencies are summarized as follows:

| Parties | Proportion $p$ | Observed (O) | Expected (E) <br> $E=n p=37 \times p$ |
| :--- | :--- | :--- | :---: |
| Conservative | 0.319 | 9 | $37 \times 0.319=11.803$ |
| Liberal | 0.395 | 17 | $37 \times 0.395=14.615$ |
| NDP | 0.197 | 6 | $37 \times 0.197=7.289$ |
| Others | $\mathbf{0 . 0 8 9 = 0 . 0 3 4 + \mathbf { 0 . 0 4 7 } + \mathbf { 0 . 0 0 8 }}$ | $\mathbf{2 + 3 = 5}$ | $37 \times 0.089=3.293$ |
|  | Sum=1 | Sum=37 | Sum=37 |

Now we have no cells with an expected count below 1, and 1 cell with an expected count below 5. So, we actually have $25 \%$ of our cells with an expected value below 5 , which exceeds the assumption requirement that no more than $20 \%$ of our cells have an expected value below 5 , but it is close, and we proceed for educational purposes.

The file "survey.xlxs" contains our sample data from the students. A column called "MergedParty" contains the data of interest (where the Green and Other cells have been renamed to "Others").

We import the data ("survey.xlsx") into R commander and perform the test:

## Data $\rightarrow$ Import data $\rightarrow$ from Excel file... (name it "Survey")

Use R commander to run the chi-square goodness-of-fit test.

1. Statistics $\rightarrow$ Summaries $\rightarrow$ Frequency distributions...
2. In the "Frequency Distributions" window, choose "Merged.Party" as the variable. Check "Chisquare goodness-of-fit test (for one variable only)". Click OK.
3. In the "Goodness-of-Fit Test" window, specify the hypothesized proportions: 0.319 for Conservative, 0.395 for Liberal, 0.197 for NDP, and 0.089 for Others. Click OK.


Steps to perform a chi-square goodness-of-fit test:

1. Set up the hypotheses:
$H_{0}: p_{C}=0.319, p_{L}=0.395, p_{N D P}=0.197, p_{\text {Others }}=0.089$
$H_{a}$ : At least one proportion is different the ones specified under $H_{0}$
2. The significance level is $\alpha=0.05$.
3. The test statistic: $\chi_{o}^{2}=\sum_{\text {all cells }} \frac{(O-E)^{2}}{\boldsymbol{E}}=2.1677$, with $d f=k-1=4-1=3$.
4. Find the $P$-value. Chi-square tests are always right tail.

P-value $=P\left(\chi^{2} \geq \chi_{o}^{2}\right)=P\left(\chi^{2} \geq 2.1677\right)=0.5383$.
5. Decision: We do not reject the null $H_{0}$ since P -value $=0.5383>0.05(\alpha)$.
6. Conclusion: At the $5 \%$ significance level, we do not have sufficient evidence that the class has a different preference pattern from the whole nation (2015 election).

Another way to conduct a chi-square goodness-of-fit without the data is to type commands in the $R$ Script window. We first need to let $R$ commander know the proportions under the null and the observed counts.

1. Type pvec=c(0.319,0.395,0.197,0.089) in the R Script Window, click "Submit".
2. Type cvec=c $(9,17,6,5)$ in the R Script Window, click "Submit".
3. Type chisq.test(cvec, $\mathbf{p = p v e c}$ ) in the R Script Window, click "Submit".

Note: for each line of the commands, put the mouse at the end of each line and click "Submit" to execute the command.


Computer output: we get the chi-square score is $2.1677, \mathrm{df}=3$, and p -value $=0.5383$, the same as the results obtained before in which we use the data.

### 8.2 CHI-SQUARE INDEPENDENCE TEST

The chi-square independence test is used to test whether two categorical variables of a population are related (associated) or independent.

## Assumptions:

1. All expected frequencies are at least 1.
2. At most $20 \%$ of the expected frequencies are less than 5 .
3. Simple random sample (if you need to generalize the conclusion to a larger population)

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in those cells larger.

Before conducting a chi-square independence test, we first check the assumptions. Calculate the expected frequency for each possible value of the variable using $E=\frac{(\text { rth row total }) \times(c \text { th column total) }}{n}$, where $n$ is the total number of observations. Check whether the expected frequencies satisfy assumptions 1 and 2. If not, consider combining some cells.

## Steps to perform a chi-square independence test:

1. Set up the hypotheses:
$H_{0}$ : The two variables are independent $H_{a}$ : The two variables are associated
2. State the significance level $\alpha$.
3. Compute the value of the test statistic: $\chi_{o}^{2}=\sum_{\text {all cells }} \frac{(O-E)^{2}}{E}$ with $d f=(r-1) \times(c-1)$, where $E=\frac{(\text { rth row total }) \times(c \text { th column total })}{n}, r$ is the number of rows and $c$ is number of columns of the cells.
4. Find the P-value or rejection region based on the $\chi^{2}$ curve with $d f=(r-1) \times(c-1)$.

| P-value | $P\left(\chi^{2} \geq \chi_{o}^{2}\right) \quad$ the area to the right of $\chi_{o}^{2}$ under the curve |
| :--- | :--- | :--- |
| Rejection region | $\chi^{2} \geq \chi_{\alpha}^{2} \quad$ the region to the right of $\chi_{\alpha}^{2}$, the area is $\alpha$ |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $\chi_{o}^{2}$ falls in the rejection region.
6. Conclusions.

## Example: Chi-square Independence Test

Note: Data set is the Focus database described on Page 34, Introductory Statistics, $10^{\text {th }}$ Edition (2016), by Neil A. Weiss, Pearson.

The Focus database contains information of a sample of 200 undergraduate students at the University of Wisconsin-Eau Claire. It has 13 variables including Sex, School/College, Classification (freshman, sophomore, junior, senior), ACT English Score, ACT math Score, ACT composite Score, and etc.

Test at the 5\% significance level whether "Sex" and "College" are associated.
Download focus.xlsx from online and import the data into R commander: Data $\rightarrow$ Import data $\rightarrow$ from Excel file... (name it "focus")

Use R-commander to run the chi-square goodness-of-fit test.

1. Statistics $\rightarrow$ Contingency tables $\rightarrow$ Two-way table...
2. In the "Two-Way Table" window, choose "SEX" as the row variable and "COLLEGE" as the column variable.
3. In the Statistics window of the "Two-Way Table" window, check "Print Expected Frequencies" and "Components of chi-square statistic".
4. Click OK.


| F | 50 | 21 | 26 | 12 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| M | 47 | 25 | 6 | 4 | 0 |

Computer Output:
Computer Output:
Frequency table:
Frequency table:
COLLEGE
COLLEGE
SEX A\&S Bus Educ Hss Nurs
SEX A\&S Bus Educ Hss Nurs
Pearson's Chi-squared test
Pearson's Chi-squared test
data: .Table
data: .Table
x-squared = 20.112, df = 4, p-value = 0.0004746
x-squared = 20.112, df = 4, p-value = 0.0004746
Expected counts:
Expected counts:
COLLEGE
COLLEGE
SEX A\&S Bus Educ Hss Nurs
SEX A\&S Bus Educ Hss Nurs
F 57.23 27.14 18.88 9.44 5.31
F 57.23 27.14 18.88 9.44 5.31
M 39.77 18.86 13.12 6.56 3.69
M 39.77 18.86 13.12 6.56 3.69
Chi-square components:
Chi-square components:
COLLEGE
COLLEGE
SEX A\&S Bus Educ Hss Nurs
SEX A\&S Bus Educ Hss Nurs
F 0.91 1.39 2.69 0.69 2.56
F 0.91 1.39 2.69 0.69 2.56
M 1.31 2.00 3.86 1.00 3.69
M 1.31 2.00 3.86 1.00 3.69
Messages
Messages
[26] WARNING:
[26] WARNING:
1 expected frequencies are less than 5
1 expected frequencies are less than 5

Steps to perform a chi-square independence test:

1. Set up the hypotheses:
$H_{0}$ : The two varibles are independent
$H_{a}$ : The two variables are associated
2. The significance level is $\alpha=0.05$.
3. The test statistic: $\chi_{o}^{2}=\sum_{\text {all cells }} \frac{(O-E)^{2}}{E}=20.112$,
with $d f=(r-1) \times(c-1)=(2-1) \times(5-1)=4$.
4. Find the P -value. Chi-square tests are always right tail.

P-value $=P\left(\chi^{2} \geq \chi_{o}^{2}\right)=P\left(\chi^{2} \geq 20.112\right)=0.0004746$.
5. Decision: We do not reject the null $H_{0}$ since P -value $=0.0004746<0.05(\alpha)$.
6. Conclusion: At the $5 \%$ significance level, we have sufficient evidence that "Sex" and "College" are associated, i.e., female and male students have significantly difference preference in choosing school/college.

Notice that all the expected cell values are above 1, so this assumption holds. Notice also the warning that the expected frequency for the Male and Nursing cell is below 5, but only $10 \%$ (one out of ten) of our expected cell frequencies are below 5 , so this assumption holds.

The fact that there are no observations in the Male and Nursing Cell is of note. An examination of the components of the chi-square test statistic does indicate that more females than expected were in nursing and less males than expected were in nursing. We also note that less females than expected were in education and more males than expected were in education. These four cells made the largest contributions towards obtaining a test statistic value that was large and led us to a significant result.

## LAB 9 Simple Linear Regression

This lab covers when and how we could model the relationship between two quantitative variables using a straight line, which is called a simple linear regression model; and how to conduct a hypothesis test and obtain a confidence interval for the slope of the regression model.

The following table and scatter plot show the relationship between the price (in $\$ 1000$ ) and the age (in years) of 15 used cars of a particular make and model. Download the dataset car.xls from online and then import it into R commander.


## Example: Simple Linear Regression Model

(a) Import the data into R commander and re-produce the scatter plot. Could we use a straight line $\hat{y}=b_{0}+b_{1} x$ to model relationship between price and age of the used cars?
Data $\rightarrow$ Import data $\rightarrow$ from Excel file... (name it "car")
Draw the scatter plot:

1. Graphs $\rightarrow$ Scatterplot...
2. In the "Scatterplot" window, select "age" as x-variable and "price" as y-variable.
3. Click OK.

Note: The price is calculated as the original price divided by 1000.
Since all the data points are roughly on a straight line, we can use a straight line $\hat{y}=b_{0}+b_{1} x$ to model relationship between price and age of the used cars.

(b) Write down the least-squares regression equation.

Fit a regression model and obtain the least squares straight line:

1. Statistics $\rightarrow$ Fit models $\rightarrow$ Linear regression...
2. In the "Linear Regression", select "price" as the Response variable (dependent variable) and "age" as the Explanatory variable (independent variable).
3. Click OK.


The values of the intercept $b_{0}$ and the slope $b_{1}$ are given in the "Estimate" column. Based on the computer outputs, we have $b_{0}=14.28595$ and $b_{1}=-0.95905$, and the fitted least-squares regression equation is

$$
\hat{y}=b_{0}+b_{1} x \Rightarrow \text { price }=14.28595+(-0.95905) \times \text { age }=14.28595-0.95905 \times \text { age }
$$

```
Call:
lm(formula = price ~ age, data = Car)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.53267 & -0.55715 & 0.04524 & 0.33140 & 1.59019
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.28595 0.44867 31.84 1.01e-13 ***
age -0.95905 0.06458 -14.85 1.56e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8162 on 13 degrees of freedom
Multiple R-squared: 0.9443, Adjusted R-squared: 0.9401
F-statistic: 220.5 on 1 and 13 DF, p-value: 1.562e-09
```

(c) Obtain and interpret the coefficient of determination $r^{2}$.

Based on the computer outputs, the coefficient of determination $r^{2}=0.9443$.
Interpretation: $94.43 \%$ of variation in the observed price of the used cars is due to the age of the used cars and can be explained by the fitted regression equation $\widehat{\text { price }}=14.28595-$ $0.95905 \times$ age.
(d) Obtain and interpret the correlation coefficient $r$.

Since the correlation coefficient $r$ and the slope $b_{1}$ have the same sign, and $b_{1}=-0.95905$ which is negative, $r=-\sqrt{r^{2}}=-\sqrt{0.9443}=-0.9718$.
Interpretation: There is a strong, negative, linear association between price and age of the used cars.
(e) Test at the $5 \%$ significance level whether age is a useful predictor for the price of a used car.

Steps:

1. Set up the hypotheses. $H_{0}: \beta_{1}=0$ versus $H_{a}: \beta_{1} \neq 0$.
2. The significance level is $\alpha=0.05$.
3. Compute the value of the test statistic: $t_{o}=\frac{b_{1}}{\frac{s_{e}}{\sqrt{s_{x x}}}}=-14.85$ with $d f=n-2=13$.
4. Find the P -value. For a two tailed test with $d f=13$, P-value $=2 P\left(t \geq\left|t_{o}\right|\right)=2 P(t \geq 14.158)=1.56 \times 10^{-9}$.
5. Decision: reject the null $H_{0}$ since $P$-value $=1.56 \times 10^{-9}<0.05(\alpha)$.
6. Conclusion: At the $5 \%$ significance level, we have sufficient evidence that age is a useful predictor for the price of a used car.

## Lab 10 One-Way ANOVA

The two-sample $t$ test can be used in comparing two population means based on two independent samples.

When comparing $k(k>2)$ population means based on $k$ independent samples, a one-way ANOVA can be used. ANOVA stands for ANalysis Of VAriance. This lab shows how to conduct a one-way ANOVA F test based on the computer output.

Let $\mu_{1}, \mu_{2}, \cdots, \mu_{k}$ be the population means of the $k$ populations, respectively.
The hypotheses of one-way ANOVA are formulated as

- $H_{0}$ : all means are equal, i.e., $\mu_{1}=\mu_{2}=\cdots=\mu_{k}$
- $H_{a}$ : not all the means are equal.


In a two-sample $t$ test, inference about the population means is based on two independent samples from two populations. In the ANOVA F test, inference about population means is based on $k$ independent simple random samples from $k$ populations.

If $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$ is true, the sample means $\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{k}$ should be close to one another and hence the variation between sample means should be small. We should reject $H_{0}: \mu_{1}=\mu_{2}=$ $\cdots=\mu_{k}$ if the sample means $\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{k}$ are very different.

## Assumptions for One-way ANOVA F Test:

- Normal populations: for each population, the variable of interest is normally distributed.
- Equal variances: the variances of the variable of interest are the same for all populations.
- Independent samples: the samples from different populations are independent of one another.
- Simple random samples: the samples taken from the $k$ populations should be simple random samples.


## Steps:

1. Set up the hypotheses:

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k} \\
H_{a}: \text { Not all means are equal }
\end{gathered}
$$

2. State the significance level $\alpha$.
3. Calculate the sums of squares SST, SSTR, SSE and the mean squares MSTR, MSE. Find the test statistic, $F_{o}$, and show the results in an ANOVA table:

| Source | $d f$ | $S S$ | $M S=\frac{S S}{d f}$ | F-statistic | p-value |
| :--- | :---: | :---: | :---: | :--- | :--- |
| Treatment | $k-1$ | $S S T R$ | $M S T R=\frac{S S T R}{k-1}$ | $F_{o}=\frac{M S T R}{M S E}$ | $P\left(F \geq F_{o}\right)$ |
| Error | $n-k$ | $S S E$ | $M S E=\frac{S S E}{n-k}$ |  |  |
| Total | $n-1$ | $S S T$ |  |  |  |

4. Find the $P$-value or rejection region based on the $F$ density curve with degrees of freedom
$d f_{\text {numerator }}=d f_{n}=k-1, d f_{\text {denominator }}=d f_{d}=n-k$.

| P-value | $P\left(F \geq F_{o}\right) \quad$ the area to the right of $F_{o}$ under the curve |
| :--- | :--- | :--- |
| Rejection region | $F \geq F_{\alpha} \quad$ the region to the right of the critical value $F_{\alpha}$ |

5. Reject the null $H_{0}$ if P -value $\leq \alpha$ or $F_{o}$ falls in the rejection region.
6. Conclusions.

## Example: One-way ANOVA F Test

A student performed an experiment to compare download speed at different times of the day. He placed a file on a remote server and then proceeded to download the file at three different time periods of the day: 7 a.m., 5 p.m., and 12 a.m. He downloaded the file 48 times, 16 times at each time period, and recorded the download time in seconds (De Veaux, Velleman, \& Bock, 2008). Does the data below provide sufficient evidence that there is a difference between the mean download times at 7 a.m., 5 $p, m$, and 12 a.m.? Test at the $1 \%$ significance level. The data can be found online in the Excel file downloading.xlsx.

| Time of Day | Time (Sec) | Time of Day | Time (Sec) | Time of Day | Time (Sec) |
| :--- | :---: | :--- | :---: | :--- | :---: |
| Early (7AM) | 68 | Evening (5 PM) | 299 | Late Night (12 AM) | 216 |
| Early (7AM) | 138 | Evening (5 PM) | 367 | Late Night (12 AM) | 175 |
| Early (7AM) | 75 | Evening (5 PM) | 331 | Late Night (12 AM) | 274 |
| Early (7AM) | 186 | Evening (5 PM) | 257 | Late Night (12 AM) | 171 |
| Early (7AM) | 68 | Evening (5 PM) | 260 | Late Night (12 AM) | 187 |
| Early (7AM) | 217 | Evening (5 PM) | 269 | Late Night (12 AM) | 213 |
| Early (7AM) | 93 | Evening (5 PM) | 252 | Late Night (12 AM) | 221 |
| Early (7AM) | 90 | Evening (5 PM) | 200 | Late Night (12 AM) | 139 |


| Early (7AM) | 71 | Evening (5 PM) | 296 | Late Night (12 AM) | 226 |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Early (7AM) | 154 | Evening (5 PM) | 204 | Late Night (12 AM) | 128 |
| Early (7AM) | 166 | Evening (5 PM) | 190 | Late Night (12 AM) | 236 |
| Early (7AM) | 130 | Evening (5 PM) | 240 | Late Night (12 AM) | 128 |
| Early (7AM) | 72 | Evening (5 PM) | 350 | Late Night (12 AM) | 217 |
| Early (7AM) | 81 | Evening (5 PM) | 256 | Late Night (12 AM) | 196 |
| Early (7AM) | 76 | Evening (5 PM) | 282 | Late Night (12 AM) | 201 |
| Early (7AM) | 129 | Evening (5 PM) | 320 | Late Night (12 AM) | 161 |

Import the data into R: Data $\rightarrow$ Import data $\rightarrow$ from Excel file... (name it "downloading")


## Computer outputs

$>$ summary (AnovaModel.6)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Time.of.Day 2204641102320 46.03 1.31e-11 ***
Residuals 451000202223
---


Steps to conduct a one-way ANOVA F-test:

1. Hypotheses

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}
$$

$H_{a}$ : Not all means are equal
2. Significance level is $\alpha=0.01$.
3. Test statistic $F_{o}=46.03$ with $d f_{n}=k-1=3-1=2, d f_{d}=n-k=48-3=45$.
4. P -value $=P\left(F \geq F_{o}\right)=P(F \geq 46.03)=1.31 \times 10^{-11}$ (given in the ANOVA table).
5. Reject $H_{0}$, since p-value $=1.31 \times 10^{-11}<0.01(\alpha)$.
6. Conclusion: At the $1 \%$ significance level we have sufficient evidence that there is a significant difference between the mean downloading time at 7 a.m., 5 p.m., and 12 a.m.

