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STAT 151 Lab Manual in R 

PREFACE 

This lab manual was prepared for the lab component of the online STAT 151 course offered at MacEwan 

University. R is an open-source implementation of the S language. It works on multiple computing 

platforms and can be freely downloaded. This lab manual introduces how to conduct descriptive 

statistics and inferential statistics using R and R commander (an R package). Descriptive statistics include 

drawing figures such as histogram, boxplot, normal Q-Q plot, scatter plot and obtaining statistical 

summaries such as mean, median, standard deviation, and quartiles. Inferential statistics cover one-

sample z test and interval, one-sample t test and t interval, two-sample t test and t interval, one-

proportion z test and interval, two-proportion z test and interval, chi-square tests, one-way ANOVA F 

test, and simple linear regression. This lab manual also illustrates how to obtain probabilities and 

cumulative probabilities and quantiles based on binomial distributions and normal distributions. 
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LAB 1 DOWNLOAD AND INSTALL R AND R COMMANDER  

1. 1 DOWNLOAD AND INSTALL R 
You can google the downloading website: 

1. Visit https://www.google.com and search for “r cran”. The first item retrieved is the website to 
download R. 

 
2. Click “Windows” if you have a windows machine or “R for Mac OS X” if you have a Mac machine. 
3. In general, it is the best to install the most current version of R.  

a. For Windows users, click “Download R 4.1.0 for Windows”. 

 

https://www.google.com/
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b. For Mac users, click “R-4.1.0.pkg”. Make sure that you install XQuartz at 
https://www.xquartz.org/ as well. You could find it in “Applications→Utilities” after 
installation.  

 
c. Please refer to Dr. John ‘s guidelines for trouble shooting at 
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html. 

 
4. If the most current release does not work well with the R commander package “Rcmdr” or the 

operating system of your machine does not support the most current release, you could install 
one of the earlier releases. For example, here are the steps to install previous release R 3.6.3 for 
Windows and R 3.3.3 for Mac instead.  
a. For Windows users, click “Previous releases” to get an earlier version of R. Choose “R 3.6.3 

(February, 2020)”. And then click “Download R 3.6.3 for Windows” 
 

 

https://www.xquartz.org/
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html


6 

 
 

 
 

b. For Mac users, click “R-3.3.3.pkg” to install version R 3.3.3. Make sure that you install 
XQuartz at https://www.xquartz.org/ as well.  
 

https://www.xquartz.org/
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1. 2 INSTALL THE R COMMANDER PACKAGE 
There are two ways to install the R Commander package.  

The first way to install R Commander (an easier way):  

1. Once you have installed R, open it by double-clicking on the icon. 

To launch R, 
double click the 
icon 
 

 
 

 

2. A window called “R Console” will open. 
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3. At the > command prompt, type the command install.packages("Rcmdr"), and click “enter”. 
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4. R will ask you to select a CRAN mirror; pick the first, "0-Cloud" mirror, or a mirror site near you. 

 

5. Once the R commander package is installed, to load the Rcmdr package, just type the command 

library(Rcmdr) beside the > prompt and click “enter”. The name of the package is case sensitive.  
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The second way to install the R commander package: 

1. Once you have installed R, open it by double-clicking on the icon. 

2. A window called “R Console” will open. 

3. Click “Packages” on the menu bar, select “Install package(s)…” in the drop-down menu. 

 

4. Click “OK” or select a location closest to you in the “HTTPS CRAN mirror” drop-down menu, and click 

“OK”. 
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5. Scroll down in the “Packages” drop-down menu, select the package “Rcmdr” and click “OK”. 
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6. Once the package is installed, the message “package ‘Rcmdr’ successfully unpacked and MD5 sums 

checked” should be shown in the R Console window. 
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7. Once the R commander package is installed, to load the Rcmdr package, just type the command 

library(Rcmdr) and click “enter”. 

1.3 STARTING R COMMANDER 
If R is not already open, open it by clicking on its icon. To open R Commander, at the > prompt type 

library(“Rcmdr”) and press Enter. If an error message says “lack of some packages, would you like to 

install those packages”, click “Yes” and select “download from CRAN”.  

You should see a large new window pop up, labeled R Commander.  



14 

 

You are now ready to analyze your data with R Commander. If you close this window while R is still 

open, you can start R Commander again by entering the command “Commander()” in R Console. 

Entering “library(Rcmdr)” in this situation will not work unless you close R and open it again. 

1.4 TROUBLE SHOOTING 
One possible way to fix the problem is to copy the error message to Google and you might find a 

remedy. Here are some common problems when installing R commander, the “Rcmdr” package. 

1. Error messages say something like “Warning in install.packages("Rcmdr") : 

'lib = "C:/Program Files/R/R-3.6.3/library"' is not writable”. 

a. Run R with Administrator privileges by right-clicking on the R shortcut and selecting ’Run as 

Administrator’. 

b. Double check whether you have any anti-virus program or security setting blocking installing 

software from so-called unknown developers. If yes, you might need to set your default  

secure cran mirror as trustable site. 

2. Any error related to the tcltk package: 

a. You might have installed the most current version of R, but your system has not been 

updated. Try installing a previous version, say R 3.6.3 for Windows users and R 3.3.3 for 

Mac users. 

b. For Mac users, make sure that XQuartz has been installed. 

3. Something like .zip file is not writable. Change the path before installing Rcmdr: 

.libPaths("C:\\Program Files\\R\\R-3.6.3\\library") 

4. Make sure that you run XQuartz before running R. Restart your computer if opening XQuartz behand 

does not work. 
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LAB 2 FIRST TASTE OF R AND R COMMANDER 

This lab introduces how to enter data into R and explore the data using figures and numerical 

summaries. 

2.1 DATA ENTRY 
There are several ways to enter data into R: manually enter, import from an existing data file, export 

from a built-in R package. 

2.1.1 Manually Enter  

1. Start a new data set through Data →New data set… 

2. Enter a new name for the data set, say “usedcar” → OK 

Note: the name cannot have space and special symbols such as $ 

Note: R is case-sensitive hence usedcar≠Usedcar 

3. A data editor window where you can type in your data using a typical spreadsheet format. You 

can type rowname (say car), variable names (say price and age). Each row corresponds to one 

independent observation. For example, the spreadsheet below shows the price (in $1000) and 

the age (in year) of four used cars. The first car is 1 year old and its price is 14 ($1000). 

4. Press Enter or click “Add row” if you need more rows.  

5. Click “Add column” if you need more variables. 

6. Click “OK”. 

 

2.1.2 Import From an Existing Data File 

The existing data can be SPSS, Minitab, text, excel, SAS, and STATA data sets. We demonstrate with text, 

SPSS and Excel files.  Data files used in this manual will be available in Blackboard (or another location 

specified by your instructor) and students can  download them there.   
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Import from a text file 

The data file needs to be organized as a classic data frame. Each column represents a single variable, e.g. 

price. Each row represents one individual. Header information needs to be contained to a single row.  

For this example, please download the file called car.txt from online. 

1. Date→Import data→from text file, clipboard or URL… 

 
 

2. Enter the name (say car) for the data set and click “OK”. 

 

3. Follow the path to where you stored the text file named car.txt is stored, and click “open”. 

 

4. The imported data set “car” is now an active data set. Click “View data set” to view data.  
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Note: R commander was developed as an easy to use graphical user interface (GUI) for R language. 

The task can be also carried out by typing the commands directly in the R Console window. The 

corresponding commands are shown in the R Script sub-window. And the corresponding computer 

output is shown in the Output sub-window. In the Messages sub-window, it tells us that the data set 

has 15 rows and 2 columns. 

Import from an SPSS file 

For this example, please download the file called 8variable_salehome.sav from online. This data set 

gives the price of 88 sale homes and had columns that detail eight  features of the homes. 

1. Date→Import data→from SPSS data set… 

 

2. Enter the name (say Home) that you want to call the data set and click “OK”. 

3. Go to the path where the sav file 8variable_salehome.sav is stored and click “open”. 
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4. The imported data set “Home” is now an active data set. Click “View data set” to view the data.  

 

Import from an Excel file 

For this example, please download the file called marathon.xlsx from online. 

1. Data→Import data→from Excel data set… 

 

2. Enter the name (say Marathon) for the data set and click “OK”. 

3. Go to the path where the Excel data file is stored and select the file marathon.xlsx and click 

“open”. 

4. The imported data set “Marathon” is now an active data set. Click “View data set” to view the 

data.  
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This data set gives the winning times (in minutes) for men and women in the New York City Marathon 

between 1978 and 2006 (www.nycmarathon.org). The last column gives the difference in winning time 

between female and male.  

2.2 EXPLORE DATA USING R COMMANDER 
Basically, there are two types of statistics: descriptive statistics and inferential statistics. 

• Descriptive statistics consists of numerical and graphical methods for organizing and 

summarizing the sampled data. One only focuses on the sampled data. 

• Inferential statistics consists of methods for drawing conclusions about the population based on 

information obtained from the sampled data. It uses the sampled data to make estimates, 

decisions, predictions, or other generalizations about the population. For inferential study, look 

for the key words “estimate for all” or “prediction for all”.  

This lab session focuses on how to obtain descriptive statistics using R commander. Statistics is all about 

data. And data are information about a group of individuals organized in variables. There are two types 

of variables: qualitative/categorical and quantitative variables. The quantitative variable can be further 

classified as either continuous or discrete. 

• Qualitative variable: A non-numerically valued variable that classifies subjects into different 

categories, such as “Name” and “Sex”. The values of qualitative variables are not numbers. A 

qualitative variable is also called a categorical variable. 

• Quantitative variable: A numerically valued variable (e.g., “Number of hours/day on internet”). 

There are two types of quantitative variable --- continuous and discrete. 

o Continuous variable: A quantitative variable whose possible values form some interval 

of numbers (e.g., height, length of feet, salary, age). Technically speaking, continuous 

http://www.nycmarathon.org/
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variables have an arbitrary number of decimal places. For any two possible values, we 

can always find some value in between. 

o Discrete variable: A quantitative variable whose possible values can be listed (e.g., 

number of siblings, number of phone calls within an hour.) 

The following table summarizes the descriptive methods for some standard statistical tasks. 

 

The 8variable_salehome.xlsx price dataset that you can find and download from online will be used as a 

demo in this section. There are eight variables of different data types. Size, area, age, and price can be 

treated as quantitative continuous; bath (# of bathrooms) and stories (# of stories) can be treated as 

quantitative discrete, and pool and roof are qualitative (categorical). We first import the data set into R 

commander. 

1. Data→Import data→from Excel data set… 

2. Enter the name (say Home) for the data set and click “OK”. 

3. Go to the path where the Excel data file is stored and select the file 8variable_salehome.xlsx 

and click “open”. 

4. The imported data set “8variable_salehome.xlsx” is now an active data set named Home in R. 

Click “View data set” to view the data.  
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2. 2.1 Obtain Numerical Summaries 

We can obtain the numerical summaries for each variable of the active data set:  
Statistics → Summaries →Active data set 

 

1. For quantitative variables, it 
gives the mean and five 
number summaries, i.e., 
minimum, 1st quartile, median 
(2nd quartile), 3rd, and 
maximum. Take age for 
example: the average age of 
those 88 sale homes is 14.14 
years with a median 16 years. 
The newest 25% of homes are 
between 6 to 9.75 years old; 
another 25% are between 9.75 
and 16; another 25% are 
between 16 and 18; the oldest 
25% are 18 years old. 
 

2. For qualitative (categorical) 
variables, it gives the 
frequencies (number of times) 
for which values occur.  Take 
Pool for example: 18 out of 88 
homes do not have a 
swimming pool and 70 have. 
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We can obtain the numerical summaries for a single quantitative variable. 
1. Statistics → Summaries →Numerical summaries… 

Note: numerical summaries are only for quantitative variables. For categorical variables, we use 
frequency distributions to summarize counts of the variable values (see below). 

2. Select the variable of interest, say age, from the list and click OK. 

 

Output: 

 

Understand the output:   

mean Sample mean, measure of central tendency 

sd Sample standard deviation, measure of spread (variation) 

IQR Inter-quartile range=3rd quartile-1st quartile, the middle 50% of the observations 
are within IQR 

0% Minimum value, 0th percentile 

25% 1st quartile. The value below which 25 percent of the observations may be found. 

50% 2nd quartile, the median. The value below which 50 percent of the observations 
may be found. 

75% 3rd quartile. The value below which 75 percent of the observations may be found. 

100% Maximum value 

n Sample size, number of individuals in the sample 

 
We can obtain the numerical summaries for a single qualitative (categorical) variable. 

1. Statistics → Summaries → Frequency distributions… 

2. Select the variable of interest, say pool, from the list and click OK. 

 

Output: 

 

1. Counts are the 
frequencies.  
 

2. Percentages are 
the relative 
frequencies 
multiplied by 100 

=
𝑐𝑜𝑢𝑛𝑡𝑠

𝑛
× 100. 
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We can obtain the numerical summaries of a single quantitative variable among different sub-groups. 

1. Statistics → Summaries → Numerical summaries… 
2. Select the variable of interest from the list, e.g., price 

3. Click “Summarize by groups…” 

4. In the pop-up window “Groups”, select the categorical variable defining the sub-groups (say the 

roof type indicating the whether the home has a tile roof or non-tile roof) and click OK. 

5. Click OK in the pop-up window Numerical Summaries. 

 

Output: 

 

Interpretation of the computer output:  

1. Out of those 88 sale homes, 63 homes have a non-tile roof and 25 have a tile roof. 

2. The average price of homes with a tile roof is $227856.0 and the average price of homes with a 

non-tile roof is $139225.7, which means on average homes with a tile roof are more expensive 

than homes with a non-tile roof.  

3. The price of homes with a tile roof has a larger variation than the price of homes with a non-tile 

roof, because it has a larger sample standard deviation ($29833.54 versus $20080.80) and a 

larger IQR ($35000 versus $27500).   

4. The price of homes with a tile roof also has a larger minimum, quartiles, and maximum, 

respectively. 

 

2.2.2 Obtain Graphs 

Almost all graphs can be found under Graphs in the menu bar. In general, the bar chart and pie chart are 

for qualitative (categorical) variables, while the histogram, boxplot, dot plot, and stem-and-leaf display 

are for quantitative variables. The scatter plot is for two quantitative variables. The quantile-comparison 

(QQ) plot is used to check whether the data follow a certain distribution. We can use it to check whether 

the data follow a normal distribution; this is called the normal probability plot in the textbook. 

Histogram for a single quantitative variable: 
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1. Graphs → Histogram…  
2. Select the variable of interest from the list, e.g., price 

3. Click Options to specify the Axis scaling; use Frequency counts for frequency and Percentages 

for relative frequency. Specify the labels and the title of the histogram if you want. 

4. Click OK 

 
 

 

 

Side-by-side histogram to compare a single quantitative variable among different sub-groups  

Graphs → Histogram…  

1. Select the variable of interest from the list, e.g., price 

2. Click Plot by groups…, select the categorical variable defining the sub-groups (say roof), click OK 

3. Click Options to specify the Axis scaling, making sure to use Percentage for a side-by-side plot 

4. Click OK 
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We can also draw the side-by-side boxplots to compare the price of homes with a tile and non-tile roof 

(see the boxplots output below) 

1. Graphs → Boxplot…  
2. Select the variable of interest from the list, e.g., price 

3. Click Plot by groups…, select the categorical variable defining the sub-groups (say roof), click OK 

4. Click OK 

 

  
Side-by-side Histogram of Price of Sale Homes 

 

 

Side-by-side Boxplot of Price of Sale Homes 
 

 

 

 

Bar Chart for a single qualitative (categorical) variable) 
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1. Graphs → Bar graph…  
2. Select the variable of interest from the list, e.g., pool (whether the home has a swimming pool) 

3. Click Options to specify style of the bars. Click OK 

4. Click OK 

  
 
Pie Chart for a single qualitative (categorical) variable  
 
Graphs → Bar graph… →select the variable (say pool) →Click OK 

                  Bar Chart with Frequency 

 

Pie Chart 

 
Contingency (two-way) table for two categorical variables  

 

1. Statistics→Contingency table→Two-way table… 

2. Specify the row variable and column variable (say pool and roof, respectively) 

3. Click Statistics→No percentage (only gives the counts in each cell) 

4. Click OK 
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Output: 

 

1. The row variable is pool, and the column variable is roof 
2. 11 out of 88 homes do not have a swimming pool and 

have a non-tile roof; 7 have no pool but a tile roof; 52 
have a pool and non-tile roof; and 18 homes have a pool 
and a tile roof. 

 

Side-by-side bar charts (conditional on sample size of sub-groups) for two categorical variables  

 

Based on the contingency table, we can draw a side-by-side bar chart to check whether those homes 

with a swimming pool and without a swimming pool share the same pattern regarding to the roof type. 

1. Graphs → Bar graph…  
2. Select the variable for X-axis, e.g., pool 

3. Click Plot by groups, select the variable whose pattern is of interest (say roof type here). Click 

ok. 

4. Click Options to specify style of the group bars. Under Axis Scaling, choose Percentages. Under 

Style of Group Bars, choose Side-by-side (parallel).  Under Percentages for the Group Bars, 

choose Conditional. This will account for the sample size in each sub-group, and the provided 

percentage in each cluster of bars will be the percentage from each subgroup. Click OK. 

5. Click OK  

 

Below, you can see: 

1) the bar for no pool and non-tile roof is at a height of 11/18 = 61.1% and the bar for no pool 

and no-tile is at 7/18 = 38.9%.  Percentages add to 100% for the no pool group. 

2) the bar for yes pool and non-tile roof is at a height of 52/70 = 74.3% and the bar for yes pool 

and tile roof is at 18/70 = 25.7%. Percentages add to 100% for the yes pool group. 

 

 
 

 

Side-by-side bar charts (using overall sample sizes) for two categorical variables  
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If at step 4 above, you had chosen Total under “Percentages for Group Bars”, the bars did not consider 

the sample size of each subgroup, you would divide the total of each bar by the overall total number of 

observations in the dataset.  This is not useful or desirable when samples sizes are different, but the 

example is included here so you can see what happens.  

Here you can see: 

1) the bar for no pool and non-tile roof is at a height of 11/88 = 12.5% and the bar for no pool 

and no-tile is at 7/88 = 8.0%.   

2) the bar for yes pool and non-tile roof is at a height of 52/88 = 59.0% and the bar for yes pool 

and tile roof is at 18/88 =20.5 %.  

3)The total of all the percentages over all the four bars is 100%.  

  
 

Side-by-side pie charts (with subset data sets) for two categorical variables 

There is no easy way to draw a side-by-side pie chart; we need to select the subset of cases of interest 

and then draw an individual pie chart for each subset. For this example, we begin with the active data 

set you called Home in R (that was from the Excel file 8variable_salehome.xlsx that we have been using 

throughout section 2.2 of the manual) and then select homes with a swimming pool and save the data in 

a new data subset called PoolYes, and then we select homes without a swimming pool from the active 

data Home and save that data in a new data subset called PoolNo. And then we draw one pie chart on 

roof type for each subset dataset PoolYes and PoolNo.   

1. Data→Active data set→Subset active data set…   

2. Select the variable to split the data (say pool here) 

3. In Subset expression, type the selection condition. For example, pool==”Yes’’  

Note: if the value is not numerical, you need to surround the value with double quotes.  Also, 

the variable name “pool” is case sensitive, the outcome “Yes” is case sensitive, and you must 

use two equal signs. 

4.  In Name of new data set, type the name of the new data set. For example, PoolYes contains all 

homes with a swimming pool. 
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Note: Now the active data set is PoolYes. Make sure you switch the active data set back to 

Home before selecting homes without a swimming pool. 

5. Click Data set, select the whole data set (Home) and click OK 

6. Repeat for homes without a swimming pool. Use the Subset expression pool==”No” and use the 

name PoolNo as your Name of New data set.  

Note: if the value is not numerical, you need to surround the value with double quotes.  Also, 

the variable name “pool” is case sensitive, the outcome “No” is case sensitive, and you must 

use two equal signs. Also, there is a space after No! 

7. Click Data set, select PoolYes as the active data set and click OK 

8. Graphs → Pie Chart…, select roof and click OK 
9. Click Data set, select PoolNo as the active data set and click OK 

10. Graphs → Pie Chart…, select roof and click OK 
 
 

   
 

With Swimming Pool 

 

Without Swimming Pool 

 

Comments:  
1. The patterns regarding to roof type are 

different for homes with and without a 
swimming pool, since the two pie charts 
are not similar. 

2.  Percentage of homes with a tile roof is 
higher for homes without a swimming 
pool. 
 

For your reference, the following table summarizes selection operators in R. 
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Scatterplot and Pearson correlation coefficient for two numerical quantitative variables.  

Here we will investigate the relationship between two quantitative variables. 

We again use the Home data.  

Draw a scatter plot of price (Y-axis) versus size (X-axis). Could we model their relationship using a 

straight line? How does price change when size increases? 

1. Click Data set, select Home as the active data set and click OK 

2. Graphs → Scatterplot… 

3. Choose size as the y-variable and price as the x variable.  

4. Click Options, select Least-squares line under Plot Options. Click OK.  

 
 

Comments: It might be okay to model the relationship between price and size using a straight line. 

When size increases the price increases. This means price and size have a positive association. 
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Like the five-number summary is the numerical summary of a boxplot, the numerical summary for a 

scatter plot is the Pearson correlation coefficient 𝑟; it captures the association between the response 

variable 𝑦 (e.g., price) and the predictor variable 𝑥 (e.g., size) in three aspects: 

• Pattern: it captures only the linear association. Do not use the correlation coefficient 𝑟 to 

describe non-linear association. 

• Strength: the closer 𝑟 is to either +1 or -1, the stronger the linear association. 𝑟 ≈ 0 indicates no 

or weak linear association. 

• Direction: positive or negative. Positive association (𝑟 > 0) means that 𝑦 and 𝑥 change in the 

same direction. That is, 𝑦 increases (decreases) if 𝑥 increases (decreases). Negative association 

(𝑟 < 0) means that 𝑦 and 𝑥 change in the opposite direction. That is, 𝑦 increases (decreases) if 𝑥 

decreases (increases). 

 

The following figure gives four scatter plots and their corresponding correlation coefficients. 

𝑟 = −0.020 

 

𝑟 = 0.697 

 

𝑟 = −0.887 

 

𝑟 = 0.989 

 

 

Calculate the Pearson correlation coefficient between price and size. 

1. Statistics→Summaries→Correlation Matrix 

2. Select price and size together, click OK 

 

Output 

 
 
The correlation coefficient between price 
and size is 𝑟 =0.857. The value is quite 
close to +1. There is fairly strong, positive, 
linear association between price and size. 

 

We can also calculate the correlation coefficient for each pair of the quantitative variables. To 

do this, select all the variables when you run the correlation matrix commands above.  
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Price and age have a 
strong, negative, 
linear association. 
Size and bath have a 
moderately strong, 
positive association. 

 

In statistics, it is important to check whether the data are taken from a normal population. The graphical 

tool used is called the normal probability plot. The normal probability plot is also called the normal Q-Q 

(Quantile-Quantile) plot since it is a scatter plot with the observed and theoretical quantiles as the axis. 

It does not matter whether we put the observed quantile on the x-axis or on the y-axis. If the data are 

taken from a normal population, the points roughly fall on a straight line. By default, R commander plots 

the theoretical quantile on the x-axis and the observed quantile on the y-axis. 

 

Using the home data set, check whether the price of sale homes follows a normal distribution. 

1. Click Data set, select Home as the active data set and click OK 

2. Graphs → Quantile-comparison plot… 

3. Select price and click OK 

 

 
 
Since the points are not roughly on a straight line, we 
can conclude that price of the sale home does not follow 
a normal distribution. 
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LAB 3 PROBABILITY DISTRIBUTIONS (BINOMIAL AND NORMAL) 

This chapter introduces how to use R commander to calculate probabilities related to Binomial 

distributions (a discrete distribution) and normal distributions (a continuous distribution). 

3.1 BINOMIAL DISTRIBUTION 
A Bernoulli trial is a chance experiment with only two possible outcomes: success or failure. Let 𝑝 be the 

probability of success. Repeat the Bernoulli trial n times and let 𝑋=number of successes out of these 𝑛 

outcomes. 𝑋 follows a Binomial distribution with parameters 𝑛 (# of trials) and 𝑝 (probability of success).  

3.1.1 Steps to Apply the Binomial Formula 

• Identify 𝑛 (# of trials) and 𝑝 (probability of success); 

• Write down the event using the variable 𝑋; 

• Re-write the event in the form of 𝑃(𝑋 = 𝑎) or 𝑃(𝑋 ≤ 𝑎) or 𝑃(𝑋 > 𝑎) if necessary. 

3.1.2 Example: Application of Binomial Distribution 

A quiz consists of 10 multiple choices questions with four choices A, B, C and D. I did not study and 

randomly picked one answer for each question.  

(a) Find the probability that I got six correct answers. 
(b) Find the probability that I got at least one correct answer. 
(c) Find the probability that I got at least nine correct answers. 
(d) Find the probability that I got eight to ten correct answers. 

 
Solutions: For each question, I either got the correct answer or not. Each question is one Bernoulli trial. 

Since I randomly picked one answer, each of the four choices has the same chance to be chosen. There 

is only one correct answer and the probability of obtaining the correct answer is ¼. Whether I obtain the 

correct answer for the current question will not affect the chance of getting the correct answer for the 

next question, so the trials are independent with the same probability of success. Let 𝑋 =# of correct 

answers.  𝑋 follows a binomial distribution. Its probability distribution is  
10 101 1

10 104 4
( ) (1 ) ( ) (1 ) (0.25) (1 0.25)x n x x x x x

n x x xP X x C p p C C− − −= = − = − = − ,   𝑥=0, 1, …,10. 

Re-write the events in the form of  𝑃(𝑋 = 𝑎) (binomial probabilities) or 𝑃(𝑋 ≤ 𝑎) (binomial lower tail 

probabilities) or 𝑃(𝑋 > 𝑎) (binomial upper tail probabilities). 

 

(a) Find the probability that I got six correct answers. 𝑃(𝑋 = 6) 
1. Distributions→Discrete distributions→Binomial distribution→Binomial probabilities 
2. In “Binomial Probability” window, put 𝑛 in Binomial trials and 𝑝 in Probability of success 
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Output gives the probability distribution, i.e., 
all possible values 𝑥 in the first column and 
their corresponding probabilities 𝑃(𝑋 = 𝑥)  
in the second column. 

Output: 

  
𝑃(𝑋 = 6) = 0.016222 

 
Note: Your computer output may use notation with e- in it, depending on your version of R. In computer 
outputs of R, 1.622200𝑒 − 02 = 1.622200 × 10−2 = 0.016222, 1.622𝑒 + 02 = 1.622 × 102 = 162.2, 

 2.861023𝑒 − 05 = 2.861023 × 10−5 = 0.00002861023. 
 

(b) Find the probability that I got at least one correct answer. 𝑃(𝑋 ≥ 1) 
Note that 𝑃(𝑋 ≥ 1) = 𝑷(𝑿 > 𝟎) = 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) + ⋯ + 𝑃(𝑋 = 10) = 𝟏 − 𝑷(𝑿 = 𝟎) 
 
Therefore, there are two ways to calculate the answer:  

• Based on the output of probability distribution, we find 
𝟏 − 𝑷(𝑿 = 𝟎) = 1 − 0.05631351 = 0.9436865 

 

• We can use the upper tail probability 𝑷(𝑿 > 𝒙). In this question, we want 𝑷(𝑿 > 𝟎). 
1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities… 
2. In “Binomial Probability” window, put 𝑥 in Variable value(s), 𝑛 in Binomial trials, and 𝑝 in 

Probability of success. In this example, 𝑥 = 0, 𝑛 = 10, 𝑝 = 0.25 
3. Select Upper tail, since we want the upper tail probability (greater than) 
4. Click OK 

 

 

Output: 

 
 
The result is the same as the one 
obtained using the first method. 

 
(c) Find the probability that I got at least nine correct answers. 𝑃(𝑋 ≥ 9) 

Note that 𝑃(𝑋 ≥ 9) = 𝑷(𝑿 > 𝟖) = 𝑷(𝑿 = 𝟗) + 𝑷(𝑿 = 𝟏𝟎) 
 
Therefore, there are two ways to calculate:  

• Based on the output of probability distribution, 
𝑷(𝑿 = 𝟗) + 𝑷(𝑿 = 𝟏𝟎) = 0.00002861023 + 0.0000009536743 = 0.0000295639 

 

• Use the upper tail probability 𝑷(𝑿 > 𝒙). In this question, we want 𝑷(𝑿 > 𝟖). 
1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities… 
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2. In “Binomial Probability” window, put 𝑥 in Variable value(s), 𝑛 in Binomial trials, and 𝑝 in 
Probability of success. In this question, 𝑥 = 8, 𝑛 = 10, 𝑝 = 0.25 

3. Select Upper tail, since we want the upper tail probability (greater than) 
4. Click OK 

 

Output: 

 
 

𝑷(𝑿 > 𝟖) = 𝟎. 𝟎𝟎𝟎𝟎𝟐𝟗𝟓𝟔𝟑𝟗 
 

(d) Find the probability that I got eight to ten correct answers, inclusively. 𝑃(8 ≤ 𝑋 ≤ 10) 
Note that  

𝑷(𝟖 ≤ 𝑿 ≤ 𝟏𝟎) = 𝑷(𝑿 = 𝟖) + 𝑷(𝑿 = 𝟗) + 𝑷(𝑿 = 𝟏𝟎) = 𝑷(𝑿 ≤ 𝟏𝟎) − 𝑷(𝑿 ≤ 𝟕) = 𝟏 − 𝑷(𝑿 ≤ 𝟕) 

Therefore, there are two ways to calculate:  

• Based on the output of probability distribution, 
𝑷(𝑿 = 𝟖) + 𝑷(𝑿 = 𝟗) + 𝑷(𝑿 = 𝟏𝟎) = 0.0003862381 + 0.00002861023 + 0.0000009536743   

=  0.000415802 
 

• Use the lower tail probability 𝑷(𝑿 ≤ 𝒙). In this question, we want  𝑷(𝑿 ≤ 𝟕). 
1. Distributions→Discrete distributions→Binomial distribution→Binomial tail probabilities… 
2. In “Binomial Probability” window, put 𝑥 in Variable value(s), 𝑛 in Binomial trials, and 𝑝 in 

Probability of success. In this question, 𝑥 = 7, 𝑛 = 10, 𝑝 = 0.25 
3. Select Lower tail, since we want the lower tail probability (less than or equal to) 
4. Click OK 

 

Output: 

 
 
𝑷(𝟖 ≤ 𝑿 ≤ 𝟏𝟎) = 𝟏 − 𝑷(𝑿 ≤ 𝟕) 
= 1 − 0.9995842 = 0.0004158 

 

3.2 NORMAL DISTRIBUTION 
We use the density curve to describe the distribution of a continuous variable. The total area under 

a density curve is one, and the area under the curve is related to the probability of a certain event. 

The most widely used continuous distribution is the normal distribution, which is well known as the 

bell-shaped and symmetric curve. The normal density function has two parameters: the mean 𝜇 and 

the standard deviation 𝜎. The parameter 𝜇 controls the center (location) of the distribution and 𝜎 

controls the shape of the distribution. When 𝜎 is larger, the curve appears to be shorter and fatter; 

when 𝜎 is smaller, the curve appears to be taller and slimmer. If a random variable X follows a 

normal distribution with mean 𝜇 and standard deviation 𝜎, we write 𝑋~ 𝑁(𝜇, 𝜎). Its probability 

density function 𝑓(𝑥) is given by: 
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𝑓(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  , −∞  < 𝑥 < ∞,  with 𝜋 ≈ 3.142, 𝑒 ≈ 2.718. 

Recall that for a binomial distribution, 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + ⋯ + 𝑃(𝑋 = 𝑥). For a 

normal distribution which is continuous, 𝑃(𝑋 = 𝑥) = 0 and therefore, 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 < 𝑥). There 

are two main applications of normal distributions: to find the probabilities given the 𝑥 values (tail 

probabilities) and to find the 𝑥 values given the probabilities (quantiles). 

3.2.1 Find the Probabilities Related to Normal Distributions 

Suppose grade 𝑋 follows a normal distribution with a mean 70 and a standard deviation 10. That is 

𝑋~ 𝑁(70, 10).  We are interested in the probabilities of the following events. 

1. Find the probability that a student has a grade below 60. 𝑃(𝑋 < 60) 

2. Find the probability that a student has a grade above 85. 𝑃(𝑋 > 85) 

3. Find the probability that a student has a grade between 60 and 85. 𝑃(60 < 𝑋 < 85) 

The following graphs show their corresponding probabilities: 

 

𝑃(𝑋 < 60)=area to the left of 60 

 

𝑃(𝑋 > 85)=area to the right of 85 

 
 

𝑃(60 < 𝑋 < 85)=area between 60 and 85 

 

 

(a) Find the probability that a student has a grade below 60. 

We want 𝑃(𝑋 < 60), which is a lower tail probability.  

1. Distributions→Continuous distributions→Normal distribution→Normal probabilities 

2. In “Normal Probability” window, put 𝑥 in Variable value(s), 𝜇 in Mean, and 𝜎 in Standard deviation. 
In this question, 𝑥 = 60, 𝜇 = 70, 𝜎 = 10 
3. Select Lower tail, since we want the lower tail probability (less than) 
4. Click OK 
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(b) Find the probability that a student has a grade above 85. 

We want 𝑃(𝑋 > 85) which is an upper tail probability. 

1. Distributions→Continuous distributions→Normal distribution→Normal probabilities 

2. In “Normal Probability” window, put 𝑥 in Variable value(s), 𝜇 in Mean, and 𝜎 in Standard deviation. 
In this question, 𝑥 = 85, 𝜇 = 70, 𝜎 = 10 
3. Select Upper tail, since we want the upper tail probability (greater than) 
4. Click OK  

 

Output: 

 
 
If  𝑋~ 𝑁(70, 10),  𝑃(𝑋 > 85)=0.0668. 
If we randomly pick one student, the 
probability that the student obtains a 
grade above 85 is 0.0668. Or 6.68% of 
the students obtain a grade above 85. 

 

(c) Find the probability that a student has a grade between 60 and 85. 

We want 𝑃(60 < 𝑋 < 85), the area between 60 and 80, which is equal to the area to the left of 85 

minus the area to the left of 60. 

 

  

 

Output: 

 
 
If  𝑋~ 𝑁(70, 10),  𝑃(𝑋 < 60)=0.1587. If we 
randomly pick one student, the probability 
that the student obtains a grade below 60 is 
0.1587. Or 15.87% of the students obtain a 
grade below 60.  
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Output: 

 
If  𝑋~ 𝑁(70, 10),  𝑃(𝑋 < 85)=0.9332. 
𝑃(60 < 𝑋 < 85) = 𝑃(𝑋 < 85) − 𝑃(𝑋 < 60)        
                                = 0.9331928 − 0.1586553    
                                = 0.7745375   
77.45% of the students obtain a between 60 and 
85. 

                                          

3.2.2 Find the Quantiles of Normal Distribution 

That is given the percentage or probability q, find the 𝑥 value such that 𝑞 = 𝑃(𝑋 < 𝑥). The 𝑥 value is 

called the quantile of the distribution corresponding to q. 

Suppose grade 𝑋 follows a normal distribution with a mean 70 and a standard deviation 10. That is 

𝑋~ 𝑁(70, 10).   

(a) If the bottom 5% of students will fail, find the passing grade. 
We want to find the 𝑥 value such that 𝑃(𝑋 < 𝑥) = 0.05, i.e., 5% of grades below what value. 
 
1. Distributions→Continuous distributions→Normal distribution→Normal quantiles 

2. In “Normal Quantiles” window, put 𝑞 in Probabilities, 𝜇 in Mean, and 𝜎 in Standard deviation. In this 
question, 𝑞 = 0.05, 𝜇 = 70, 𝜎 = 10 
3. Select Lower tail, since we want the 𝑥 value corresponding to a lower tail probability (less than) 
4. Click OK 

  

 
 
Output: 

 
The passing grade is 53.55, since 𝑃(𝑋 < 53.55) = 0.05. 

 
(b) If the top 2% of students will get an A, find the cutoff of getting an A.  
We want to find the 𝑥 value such that 𝑃(𝑋 > 𝑥) = 0.02, i.e., 2% of grades above what value or 98% of 
grades below what value. 
 
Approach 1: upper tail probability, find the 𝑥 value such that 𝑃(𝑋 > 𝑥) = 0.02. 
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1. Distributions→Continuous distributions→Normal distribution→Normal quantiles 

2. In “Normal Quantiles” window, put 𝑞 in Probabilities, 𝜇 in Mean, and 𝜎 in Standard deviation. In this 
question, 𝑞 = 0.02, 𝜇 = 70, 𝜎 = 10 
3. Select Upper tail, since we want the 𝑥 value corresponding to an upper tail probability (greater than) 
4. Click OK 

Approach 2: lower tail probability, find the 𝑥 value such that 𝑃(𝑋 < 𝑥) = 0.98. 

Note that 2% of grades above what value=98% of grade below what value. That is  

𝑃(𝑋 > 𝑥) = 0.02 is that same as 1 − 𝑃(𝑋 > 𝑥) = 1 − 0.02 ⟹ 𝑷(𝑿 < 𝒙) = 𝟎. 𝟗𝟖 

 

1. Distributions→Continuous distributions→Normal distribution→Normal quantiles 

2. In “Normal Quantiles” window, put 𝑞 in Probabilities, 𝜇 in Mean, and 𝜎 in Standard deviation. In this 
question, 𝑞 = 0.98, 𝜇 = 70, 𝜎 = 10 
3. Select Lower tail, since we want the 𝑥 value corresponding to a lower tail probability (less than) 
4. Click OK 

 

 
The cutoff of A is 90.54. Students get a 
grade above 90.54 will get an A. 

 
 

 

 

3.3 GENERATE SIMPLE RANDOM SAMPLES FROM A CERTAIN DISTRIBUTION 

3.3.1 Setting a Seed 

Although you can let the software choose a random seed prior to generating simple random samples, 

examples that require the generation of simple random samples in the manual will require you to set 

a given seed that is provided for you.  This allows the output in the manual examples to match what 

you get as you work through them.  Setting a seed retires meticulous input to R. 

You must set your desired seed every time you do a new problem! 
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Instructions are below for setting a seed of 1234. 

Approach 1 (fastest, but you must be meticulously accurate, and it is easy to mess up):  

Type the command set.seed(1234) in the R Script box (not in the Output box!!!), then click “Submit” (do 

not hit “Enter”, it will not work). The command line will be executed and appear in the Output box. 

Make sure there are no characters in front of your set.seed(1234) command and that the command is 

typed flush against the left side of the R Script box in a new line all by itself.  See below.  

 

Approach 2: tedious and kind of mission impossible.  

Drop down Distributions→Set random number generator seed. A box appears with a suggested seed.  

Your box may have a different suggested seed.  

 

Move the two boxes together to get as close to 1234 as you can.  The closest I can get is 1191.  The 

closest number you can get may be different. 
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Click carefully, as many times as necessary, in the grey bar directly beside the boxes to move the seed 

number you have there to 1234.  This is very tedious.  Again, you must set the seed to the given seed 

each time you do a problem. 

         

Once succeed, click OK.  

3.3.2 Generate Simple Random Sample from a Normal Distribution 

Suppose we want to generate n=5 observations from a normal distribution with mean 𝜇=70 and 
standard deviation 𝜎=10. We set a seed of 1234.  We call the one dataset Normaln5 since the sample 
size is 5 and we are doing only 1 set (of samples of size 5). 
 
1. Type set.seed(1234) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Continuous distributions→Normal distribution→Sample from normal distribution… 

3. In the “Sample from Normal Distribution” window, perform the following.  Enter name of data set 

(say Normaln5), put 𝜇 in Mean, and 𝜎 in Standard deviation, number of samples in Number of samples 

(rows), and the sample size 𝑛 in Number of observations (columns). In this question, 𝜇 = 70, 𝜎 = 10, 

we only want one simple random sample, with sample size 𝑛 = 5. 

4. Select Sample means under Add to Data Set.  It will store the sample mean of the sample in the last 

column. Click OK. 

5. Select Normaln5 under Data set to make it as active data set 

6. Click View data set to view the sampled data 

 We can also generate 𝐾 sets of simple random samples of size 𝑛 by setting the value of Number of 

observations (columns) to be 𝐾. For example, if we want to generate three simple random samples of 

size 5, we would follow the steps 1 to 6 above (including setting the seed to 1234) and put 3 in Number 

of samples (rows) and 5 in Number of observations (columns). I named it Normaln5k3. 

 
Output 

 
Output 
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3.3.3 Generate Simple Random Sample from an Exponential Distribution 

An exponential distribution is an extremely right skewed continuous distribution which is widely used to 

model the lifetime of products. The density function of exponential distribution is given by: 

𝑓(𝑥) =
1

𝜆
𝑒−

𝑥

𝜆 , 𝑥 > 0,  with 𝑒 ≈ 2.718  

denoted as 𝑋~𝐸𝑥𝑝(𝜆) where 𝜆 is the mean (expected value) of X. One property of an exponential 

distribution is the mean and standard deviation both equal 𝜆, i.e., 𝜇 =  𝜎 = 𝜆. 

Suppose the survival time of liver cancer patients, 𝑋, follows an exponential distribution with mean and 

standard deviation 5 years, i.e., 𝜇 = 𝜆 = 5, 𝜎 = 𝜆 = 5. 

(a) Generate 10000 observations from an exponential population distribution with mean  𝜆 = 5 or rate 
1

𝜆
=

1

5
= 0.2. Use the seed 1235 and save the data in the file “Exponentialn1000”.  

(b) Draw a histogram using those 10000 observations.  With 10000 observations, this sample histogram 

provides an excellent approximation of an exponential population distribution with mean 5. 

(c) Calculate the sample mean and sample standard deviation and compare them with the population 

mean and standard deviation. 

  

1. Type set.seed(1235) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Continuous distributions→Exponential distribution→Sample from exponential 

distribution… 

3. In the “Sample from Exponential Distribution” window, type “Exponentialn10000” in Enter name of 

data set, put 0.2 in Rate, 10000 in Number of samples (rows), and 1 in Number of observations 

(columns).  

4. Click OK 

5. Select Exponentialn10000 under Data set to make it as active data set 

6. Click View data set to view the sampled data. The samples are stored in the column “obs”, the data 

set has one column and 10000 rows. 

7. Graphs→Histogram 

8. Select “obs” and click OK. 
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8. Statistics→Summaries→Numerical Summaries 
9. In the Numerical Summaries window, select “obs” and click Statistics 

10. Check “Mean”, “Standard Deviation”, “Interquartile Range” and “Quantiles”. 

  
Outputs  

 

 

• The histogram shows that the 
distribution of exponential with mean  

𝜇 = 𝜆 = 5 or rate 
1

𝜆
=

1

5
= 0.2 is 

extremely right skewed. 

• The sample mean based on 𝑛 =
10000 observations is �̅� = 4.927 
which is very close to the population 
mean 𝜇 = 5 due to the large sample 
size. 

• The sample standard deviation 𝑠 =
4.914 which is also very close to the 
population standard deviation 𝜎 =
𝜆 = 5. Note that for an exponential 
distribution, the population mean 
and standard deviation are equal. 
That is 𝜇 = 𝜎 = 𝜆. 
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LAB 4 DISTRIBUTION OF THE SAMPLE MEAN & CENTRAL LIMIT THEOREM 

In this lab, we are going to investigate the distribution of the sample mean �̅� by generating samples with 

different sample sizes from different population distributions. The central limit theorem states that 

when the sample size 𝑛 is large enough (rule of thumb: 𝑛 ≥ 30), the sample mean �̅� is approximately 

normally distributed regardless of the population distribution. We can understand the central limit 

theorem by simulation. 

4.1 OBTAIN THE DISTRIBUTION OF THE SAMPLE MEAN FROM A CERTAIN DISTRIBUTION 
1. Take a simple random sample of size 𝑛 from a certain distribution. 

2. Calculate the sample mean �̅�. 

3. Suppose the population size is 𝑁 (i.e., there are 𝑁 individuals in the population), so there are 

𝑁𝐶𝑛 (𝑁 choose 𝑛) distinct samples. One sample will generate one value of the sample mean �̅�. 

4. Drawing a histogram on those 𝑁𝐶𝑛 �̅�-values gives the distribution of the sample mean �̅� for 

sample size 𝑛. 

5. If 𝑁𝐶𝑛 is too large for us to consider all possible samples, we can generate a sufficiently large 

number of samples, say 10000, to approximate the distribution of the sample mean �̅�.   

 

For the distribution of the sample mean �̅� with sample size 𝑛, we have the following conclusions: 

• The mean of the sample mean �̅� equals the population mean 𝜇; that is  

𝜇�̅� = 𝜇. 

 

• The standard deviation of the sample mean �̅� equals the population standard deviation 𝜎 

divided by the square root of the sample size; that is  

𝜎�̅� =
𝜎

√𝑛
. 

These two conclusions are always true for any population distribution and for any sample size 𝑛. 

We discuss the shape of the distribution of the sample mean �̅� in two cases: 

1. When the population distribution (the distribution of the variable under consideration 𝑋) is 

normal, the sample mean �̅� is exactly normally distributed regardless of the sample size 𝑛. 

2. When the population distribution is not normal, but the sample size 𝑛 is large, the sample mean 

�̅� is approximately normally distributed. This is guaranteed by the central limit theorem. 

4.2 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS NORMAL 
Suppose a population consists of 𝑁 = 100 students and the variable of interest is the grade 𝑋. The 

histogram of the grades of these 100 students gives the population (or parent) distribution, the 

distribution of 𝑋. The mean and standard deviation of these 100 grades give the population mean and 

population standard deviation, respectively, as 𝜇 = 70 and 𝜎 = 10. The normal QQ plot shows that the 

grade 𝑋 follows a normal distribution, since all the data points roughly lie on a straight line.  
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Let us examine the distribution of sample mean �̅� with sample size 𝑛 = 2, 5, 30 respectively.   

For each sample size 𝑛 (# of observations (columns)), generate 10000 samples (# of rows). Use the seed 

5942 for each n. Calculate the sample mean �̅� for each sample by calculating the average of each row 

and store the value in the last column of the data file. Draw a histogram on the last column to obtain the 

distribution of the sample mean.  

1. Type set.seed(5942) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Continuous distributions→Normal distribution→Sample from normal distribution… 

3. In the “Sample from Normal Distribution” window, type Normaln2 in Enter name of data set, put 70 

in Mean, and 10 in Standard deviation, 10000 in Number of samples (rows), and 2 in Number of 

observations (columns) 

4. Select Sample means under Add to Data Set, and the dataset will store the sample mean of the 

sample in the last column (labeled “mean”). 

5. Click OK 

6. Select Normaln2 under Data set to make it as active data set 

7. Click View data set to view the sampled data 
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8. Graphs→Histogram 

9. Select “mean” and click OK. 

10. Statistics→Summaries 
11. In the “Numerical Summaries” window, select “mean” and click Statistics 

12. Check “Mean”, “Standard Deviation” 

13. Repeat steps 1-12 for sample size 𝑛 = 5 and 𝑛 =  30 in “Sample from Normal Distribution” 

window).  For each repetition of the steps, type set.seed(5942) in the R Script box and click submit.  Use 

the file names Normaln5 and Normaln30.  Never write over a file. 

   
𝑛 = 2 

 

𝑛 = 5 

 

𝑛 = 30 

 

   
Findings: 

• The mean of the sample mean is always very close to the population mean 𝜇 = 70 regardless of 

the sample size 𝑛. The difference is because we did not consider all possible samples of size 𝑛, 

but only 10000 samples. 

• The standard deviation of the sample mean is always close to theoretical value 
𝜎

√𝑛
=

10

√𝑛
. When 

𝑛 = 2,
10

√𝑛
=

10

√2
= 7.071; when 𝑛 = 5,

10

√𝑛
=

10

√5
= 4.472; when 𝑛 = 30,

10

√𝑛
=

10

√30
= 1.826. 

• The histogram of the sample mean has a bell-shaped curve regardless of the sample size 𝑛 =

2, 5, or 30. 
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4.3 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS UNIFORM 
 

Suppose 𝑋, the smiling time of eight-week-old 
babies, follows a uniform distribution between 0 
and 10 seconds. The density curve is shown in the 
right panel. The density curve forms a rectangle 
and hence not a normal curve for sure. The 
population mean 𝜇 = 5 second and the 
population standard deviation 𝜎 = 2.89 second.  
 
Let’s examine the distribution of sample mean �̅� 
with sample size 𝑛 = 2, 5, 30 respectively. That is 
the distribution of the average smiling time of 𝑛 
randomly selected babies.  
 

 
 

For each sample size 𝑛 (# of columns), generate 10000 samples (# of rows). Use the seed 3921 for each 

n. Calculate the sample mean �̅� for each sample by calculating the average of each row and store the 

value in the last column of the data file. Draw a histogram on the last column to obtain the distribution 

of the sample mean.  

1. Type set.seed(3921) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Continuous distributions→Uniform distribution→Sample from uniform 

distribution… 

3. In the “Sample from Uniform Distribution” window, type Uniformn2 in Enter name of data set, put 0 

in Minimum and 10 in Maximum, 10000 in Number of samples (rows), and 2 in Number of 

observations (columns) 

4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last 

column. 

5. Click OK 

6. Select Uniformn2 under Data set to make it as active data set 
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7. Click View data set to view the sampled data 

8. Graphs→Histogram 

9. Select “mean” and click OK. 

10. Statistics→Summaries 
11. In the “Numerical Summaries” window, select “mean” and click Statistics 

12. Check “Mean”, “Standard Deviation” 

13. Repeat steps 1-12 for sample size 𝑛 = 5, and 𝑛 = 30 (number of columns in “Sample from Uniform 

Distribution” window). Type set.seed(3921) each time before sampling data from the uniform 

distribution.  Use the file names Uniformn5 and Uniformn30.  Never write over a file. 

 

𝑛 = 2 

 

𝑛 = 5 

 

𝑛 = 30 

 

   

Findings: 

• The mean of the sample mean is always very close to the population mean 𝜇 = 5 regardless of 

the sample size 𝑛. The difference is because we did not consider all possible samples of size 𝑛, 

but only 10000 samples. 

• The standard deviation of the sample mean is always close to the theoretical value 
𝜎

√𝑛
=

2.89

√𝑛
. 

When 𝑛 = 2,
𝜎

√𝑛
=

2.89

√2
= 2.044; when 𝑛 = 5,

𝜎

√𝑛
=

2.89

√5
= 1.292; when 𝑛 = 30,

𝜎

√𝑛
=

2.89

√30
=

0.528. 
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• The population is symmetric, and the distribution of the sample mean is triangular when 𝑛 = 2. 

The distribution of the sample mean appears to be normal for 𝑛 = 5 and 𝑛 =  30.  

4.4 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS EXPONENTIAL 
Suppose the survival time of liver cancer patients, 𝑋, follows an exponential distribution with mean and 

standard deviation 5 years, which is an extremely right skewed distribution.  

  

 

Let's examine the distribution of sample mean �̅� with sample size 𝑛 = 2, 5, 30 respectively. That is the 

distribution of the average of survival time of 𝑛 randomly selected patients. 

 

For each sample size 𝑛 (# of columns), generate 10000 samples (# of rows). Use the seed 4518 for each 

n. Calculate the sample mean �̅� for each sample by calculating the average of each row and store the 

value in the last column of the data file. Draw a histogram on the last column to obtain the distribution 

of the sample mean.  

 

1. Type set.seed(4518) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Continuous distributions→Exponential distribution→Sample from exponential 

distribution… 

3. In the “Sample from Exponential Distribution” window, type the name of the data file you would like 

to store the sampled data in Enter name of data set (say Exponentialn2), put 0.2 in Rate, 10000 in 

Number of samples (rows), and 2 in Number of observations (columns) 

4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last 

column. 

5. Click OK 

6. Select Exponentialn2 under Data set to make it as active data set 

7. Click View data set to view the sampled data 
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8. Graphs→Histogram 

9. Select “mean” and click OK. 

10. Statistics→Summaries 
11. In the “Numerical Summaries” window, select “mean” and click Statistics 

12. Check “Mean”, “Standard Deviation” 

13. Repeat steps 1-12 for sample sizes 𝑛 = 5 and 𝑛 = 30 (number of columns in “Sample from 

Exponential Distribution” window). Type set.seed(4518) and click submit each time before sampling 

data from the exponential distribution.  Use the file names Exponentialn5 and Exponentialn30.  Never 

write over a file. 

   

 

𝑛 = 2 

 

𝑛 = 5 

 

𝑛 = 30 
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Findings: 

• The mean of the sample mean is always very close to the population mean 𝜇 = 5 regardless of 

the sample size 𝑛. The difference is because we did not consider all possible samples of size 𝑛, 

but only 10000 samples. 

• The standard deviation of the sample mean is always close to the theoretical value 
𝜎

√𝑛
=

5

√𝑛
. 

When 𝑛 = 2,
5

√𝑛
=

5

√2
= 3.536; when 𝑛 = 5,

5

√𝑛
=

5

√5
= 2.236; when 𝑛 = 30,

5

√𝑛
=

5

√30
= 0.913. 

• The population is extremely right skewed, and the distribution of the sample mean is still right 

skewed for the relatively small sample sizes of 𝑛 = 2 and 5. But it is roughly normal when 

sample size 𝑛 ≥ 30. 

4.5 DISTRIBUTION OF THE SAMPLE MEAN WHEN THE POPULATION DISTRIBUTION IS CHI-SQUARE 
The Chi-square distributions form a family of right skewed distributions where a parameter called 

“degrees of freedom” determines where the peak of the distribution is and how skewed the distribution 

is. The mean of the Chi-square distribution is equal to its number of degrees of freedom.  The variance 

of a Chi-square distribution is equal to two times the number of its degrees of freedom.  This 

distribution is used in Goodness of Fit Tests and in Tests of Independence (both of which we will work 

with later in the course) and is a distribution that can characterize magnetic resonance imaging data.  

 

Suppose the random variable 𝑋, follows a chi-square distribution with 5 degrees of freedom.  So, it has a 

mean µ = 5 and standard deviation σ = √𝜎2 = √2 × 5 = √10 = 3.162278 (to 6 decimals).  The density 

curve of the distribution is shown below.   

 

 
 

 

Let's examine the distribution of sample mean �̅� with sample size 𝑛 = 2, 5, 30 respectively.  

 

For each sample size 𝑛 (# of columns), generate 10000 samples (# of rows). Use the seed 6292 for each 

n. Calculate the sample mean �̅� for each sample by calculating the average of each row and store the 

value in the last column of the data file. Draw a histogram on the last column to obtain the distribution 

of the sample mean.  

 

1. Type set.seed(6292) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
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2. Distributions→Continuous distributions→Chi-squared distribution→Sample from chi-squared 

distribution… 

3. In the “Sample from ChiSquared Distribution” window, type the name of the data file you would like 

to store the sampled data in Enter name of data set (say ChiSquaredn2), put 5 in Degrees of Freedom, 

10000 in Number of samples (rows), and 2 in Number of observations (columns) 

4. Select Sample means under Add to Data Set, it will store the sample mean of the sample in the last 

column. 

5. Click OK 

6. Select ChiSquareln2 under Data set to make it as active data set 

7. Click View data set to view the sampled data 

 

 
 

 

8. Graphs→Histogram 

9. Select “mean” and click OK. 

10. Statistics→Summaries 
11. In the “Numerical Summaries” window, select “mean” and click Statistics 

12. Check “Mean”, “Standard Deviation” 

13. Repeat steps 1-12 for sample sizes 𝑛 = 5 and 𝑛 = 30 (number of columns in “Sample from 

ChiSquared Distribution” window). Type set.seed(6292) and click submit each time before sampling 

from the chi-square distribution.  Use the file names Chisquaredn5 and Chisquaredn30.  Never write 

over a file. 
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𝑛 = 2 

 

𝑛 = 5 

 

𝑛 = 30 

 

   
 

Findings: 

• The mean of the sample mean is always very close to the population mean 𝜇 = 5 regardless of 

the sample size 𝑛. The difference is because we did not consider all possible samples of size 𝑛, 

but only 10000 samples. 

• The standard deviation of the sample mean is always close to the theoretical value 
𝜎

√𝑛
=

√2×5

√𝑛
. 

When 𝑛 = 2,
√10

√𝑛
=

3.162278

√2
= 2.236; when 𝑛 = 5,

√10

√𝑛
=

3.162278

√5
=  1.414; when 𝑛 = 30,

√10

√𝑛
=

3.162278

√30
= 0.577. 

• The population is quite right skewed, and the distribution of the sample mean is still right 

skewed for the relatively small sample sizes of 𝑛 = 2 and 5. But it is roughly normal when 

sample size 𝑛 ≥ 30. 

4.6 CENTRAL LIMIT THEOREM FOR THE SAMPLE MEAN                                                                                                            
The Central Limit Theorem (CLT) states that when the sample size 𝑛 is large enough, the sample mean �̅� 

is approximately normally distributed, regardless of the distribution of the variable under consideration 

(the population distribution). 

  

Note that: 

• The central limit theorem is about the shape of the sample mean �̅�. It is the random variable �̅� 

that will be normally distributed if the sample size 𝑛 is large enough. 

• What constitutes a large enough value of 𝑛 is depends on the shape of the population 

distribution. If the population distribution, the distribution of 𝑋, is symmetric, 𝑛 ≥ 5 might be 

large enough to claim that the sample mean �̅� is normally distributed; if the distribution of 𝑋 is 

not too extremely skewed, 𝑛 ≥ 30 should be enough; if the population is very skewed, we 

might need 𝑛 ≥ 100 (see the central limit theorem for proportion in the next section). 
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4.7 CENTRAL LIMIT THEOREM FOR THE SAMPLE PROPORTION  

Recall that the population mean 𝜇 =
∑ 𝑥𝑖

𝑁
, where 𝑁 is the population size (number of individuals in the 

population), is a population parameter used to describe the population. The population proportion 

 

𝑝 =
# of individuals having a certain attribute

population size
=

# of successes

𝑁
 

 

is another parameter used to describe the population.  

 

For example, the proportion of female students at MacEwan is defined as  

 

𝑝 =
# of female students at MacEwan

total number of students at MacEwan
=

# of successes

𝑁
, 

 

where picking a female student is regarded as a success event. 

Just as the sample mean �̅� =
∑ 𝑥𝑖

𝑛
 is used to estimate the population mean 𝜇, the sample proportion 

�̂� which is defined as: 

�̂� =
# of individuals having a certain attribute in the sample

sample size
=

# of successes in the sample

𝑛
 

 

is used to estimate the population proportion 𝑝. 

 

Inference on the population mean 𝜇 is based on the distribution of the sample mean �̅�. Similarly, 

inference on the population proportion 𝑝 is based on the distribution of the sample proportion �̂�. 

 

Population proportion is defined as:  

𝑝 =
# of individuals having a certain attribute

# of individuals in thepopulation 
=

# of successes

𝑁
. 

 

Population proportion can be regarded as a special population mean if we let the variable of interest be 

an indicator variable as follows: 

𝑥𝑖 = {
1   if the 𝑖th individual has the attribute (a success)

0       if the ith individual does not have the attribute.
 

 

Then the population proportion can be rewritten as: 

𝑝 =
# of individuals having a certain attribute

# of individuals in thepopulation 
=

# of successes

𝑁
=

∑ 𝑋𝑖

𝑁
 

 

The variable of interest 𝑋 has only two possible values: 1 if the individual has the attribute and 0 if not.  

If we randomly select one individual, the probability that this individual has the attribute is 𝑝.  

 

As a result, the probability distribution of 𝑋 is: 

𝑥 1 0 

𝑃(𝑋 = 𝑥) 𝑝 1 − 𝑝 



56 

 

with a population mean and population standard deviation: 

𝜇 = ∑ 𝑥𝑃(𝑋 = 𝑥) = 1 × 𝑝 + 0 × (1 − 𝑝) = 𝑝 

𝜎 = √∑ 𝑥2𝑃(𝑋 = 𝑥) − 𝜇2 = √12 × 𝑝 + 02 × (1 − 𝑝) − 𝜇2 = √𝑝 − 𝑝2 = √𝑝(1 − 𝑝). 

 

When we take a simple random sample of size 𝑛, the proportion of individuals in the sample who have 

the specific attribute is the sample proportion (which can be regarded as a special sample mean �̅� ). 

 

�̂� =
# of individuals having a certain attribute in the sample

sample size
=

# of successes in the sample

𝑛
=

∑ 𝑥𝑖

𝑛
= �̅� 

 

with 𝑥𝑖 = 1 if the individual has the attribute and 0 if not. 

 

Therefore, the sampling distribution of the sample proportion �̂� has the following properties: 

• Center: the mean of the sample proportion �̂� equals the population mean 𝜇; that is  

𝜇𝑝 = 𝜇 = 𝑝. 

 

• Spread: the standard deviation of the sample proportion �̂� equals the population standard 

deviation 𝜎 divided by the square root of the sample size; that is  

𝜎𝑝 =
𝜎

√𝑛
=

√𝑝(1 − 𝑝)

√𝑛
= √

𝑝(1 − 𝑝)

𝑛
. 

 

These two results above are always true for any sample size 𝑛. 

 

• Shape: The population distribution is non-normal. By the central limit theorem (CLT), however, 

�̂� is approximately normal if 𝑛 is large enough. The thumb of rule is to guarantee both 𝑛𝑝 ≥ 5 

and 𝑛(1 − 𝑝) ≥ 5, i.e., 𝑛 = max {
5

𝑝
,

5

1−𝑝
}, the larger value of  

5

𝑝
  and 

5

1−𝑝
. Some textbooks 

require both 𝑛𝑝 ≥ 10 and 𝑛(1 − 𝑝) ≥ 10. 

 

Central limit theorem for the sample proportion: 

 

If the sample size 𝑛 (rule of thumb: 𝑛𝑝 ≥ 5 and 𝑛(1 − 𝑝) ≥ 5) is large enough, the sample proportion �̂� 

is approximately normally distributed.  

 

Suppose the population proportion is 𝑝 = 0.05. By the rule of thumb, a sample size of at least 

 

𝑛 = max {
5

𝑝
,

5

1 − 𝑝
} = max {

5

0.05
,

5

1 − 0.05
} = max{100, 5.26} = 100 
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is required to make the sample proportion �̂� be normally distributed. A larger sample size 𝑛 is required 

to make the sample proportion �̂� to be approximately normally distributed when the population 

proportion is either closer to 0 or 1. 

We can generate data from the population distribution 𝑋 = {
1                with probability 𝑝 = 0.05
0       with probability 1 − 𝑝 = 0.95,

  

 

which is a special binomial distribution with number of trials 𝑛 = 1 and probability of success 𝑝 = 0.05. 

 

For this population proportion distribution (where the attribute occurs with a probability of 0.05), we 

will investigate the sampling distribution of the sample proportion �̂�  with a sample size of  𝑛 =

50, 100, 200, 1000 respectively. That is the distribution of the average number of individuals out of 𝑛 

randomly selected individuals who have a certain attribute. 

 

For each sample size 𝑛 (# of columns), generate 10000 samples (# of rows) sequence of 0s and 1s.  Set 

the seed 59744 in each case. Calculate the sample mean for each sample by calculating the average of 

each row and store the value in the last column of the data file. Draw a histogram on the last column to 

obtain the distribution of the sample proportion.  

 

1. Type set.seed(59744) in the R Script box (on its own line and flush against the left side of the box). 
Click Submit. 
2. Distributions→Discrete distributions→Binomial distribution→Sample from binomial distribution… 

3. In the “Sample from Binomial Distribution” window, type the name of the data file you would like to 

store the sampled data in Enter name of data set (say Binomialn50), put 1 in Binomial trials, 0.05 in 

Probability of success, 10000 in Number of samples (rows), and 50 in Number of observations 

(columns) 

4. Select Sample means under Add to Data Set, it will store the sample proportion of the sample in the 

last column. Click OK.  

5. Select Binomialn50 under Data set to make it as active data set 

6. Click View data set to view the sampled data 

 

 

8. Graphs→Histogram 

9. Select “mean” and click OK. 

10. Statistics→Summaries 
11. In the “Numerical Summaries” window, select “mean” and click Statistics 
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12. Check “Mean”, “Standard Deviation” 

13. Repeat steps 1-11 for sample size 𝑛 = 100, 200, 1000 (number of columns in “Sample from 

Binomial Distribution” window) 

  
The following figures shows the sampling distribution of the sample proportion with different sample 

size 𝑛=50, 100, 200 and 1000.  

𝑛 = 50 

 

 

𝑛 = 100 

 

 

𝑛 = 200 

 

 

𝑛 = 1000 
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Findings: 

• The mean of the sample proportion is always very close to the population proportion 𝑝 = 0.05 

regardless of the sample size 𝑛. The difference is because we did not consider all possible 

samples of size 𝑛, but only 10000 samples. 

• The standard deviation of the sample proportion is always close to the theoretical value 

√
𝑝(1−𝑝)

𝑛
= √

0.05(1−0.05)

𝑛
. When 𝑛 = 50, √

𝑝(1−𝑝)

𝑛
= √

0.05(1−0.05)

50
= 0.0308; when 𝑛 = 100,

√
𝑝(1−𝑝)

𝑛
= √

0.05(1−0.05)

100
= 0.0218; when 𝑛 = 200, √

𝑝(1−𝑝)

𝑛
= √

0.05(1−0.05)

200
= 0.0154; when 

𝑛 = 1000, √
𝑝(1−𝑝)

𝑛
= √

0.05(1−0.05)

1000
= 0.0069 

• The population is extremely right skewed, and the distribution of the sample proportion is still 

right skewed for relatively large sample sizes 𝑛 = 50. It is still slightly right skewed when 𝑛 =

100, even though 𝑛 = 100 should large enough according to the rule of thumb. But it is roughly 

normal when sample size 𝑛 = 200 and 1000. 

Recall that the central limit theorem tells us that the sample mean �̅� will be approximately normally 

distributed when the sample size n is large enough. The rule of thumb is 𝑛 ≥ 30. However, how large n 

is large enough to make the sample mean �̅� be normally distributed depends on how far the population 

distribution departs from a normal distribution; the further the population distribution is away from a 

normal distribution, the larger the sample size n is required. If the population distribution is continuous 

and not extremely skewed, n=30 should be large enough; however, if the population distribution is 

discrete (like the Bernoulli distribution for sample proportion), a much larger n is required, say n=200 or 

more.  
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LAB 5 CONFIDENCE INTERVAL AND HYPOTHESIS TESTS FOR ONE MEAN 

There are two types of statistics: descriptive and inferential statistics. We will focus on inferential 

statistics hereafter. Inferential statistics include estimation and hypothesis testing. Estimation is to 

estimate the value of a population parameter; hypothesis testing is to test whether a statement about 

the value of a population parameter is true or false. This lab illustrates how to obtain a confidence 

interval and conduct a hypothesis test for the population mean 𝜇 based on one simple random sample. 

A general form for a confidence interval for a population parameter is  

𝑝𝑜𝑖𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑒𝑟𝑟𝑜𝑟 = 𝑝𝑜𝑖𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑚𝑢𝑙𝑖𝑡𝑝𝑙𝑖𝑒𝑟 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟. 

General steps to set up the hypotheses: 

1. Look for the key words, write down what we want to claim under the alternative 𝐻𝑎. 
2. Take the opposite of the alternative 𝐻𝑎 to obtain the null 𝐻0. 

Depending on the purpose of the hypothesis test, there are three choices for 𝐻𝑎: 

Two tailed Right (upper) tailed Left (lower) tailed 

𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 
“differ”, “change” “more than”, “increase” “less than”, “decrease” 

 

Depending on whether the population standard deviation 𝜎 is known or not, we can use the one-sample 

𝑧 test and interval or the one-sample 𝑡 test and interval.  

5.1 ONE-SAMPLE 𝒛 TEST AND INTERVAL WHEN THE POPULATION STANDARD DEVIATION IS KNOWN 
Use the one-sample 𝑧 test and 𝑧 interval when the population standard deviation 𝜎 is known. The 

assumptions and steps to conduct a one-sample 𝑧 test and 𝑧 interval are as follows. 

Assumptions:  

1. A simple random sample (SRS) 
2. Normal population or large sample size (𝑛 ≥ 30) 
3. The population standard deviation 𝜎 is known 

Steps:  

1. Set up the hypotheses: 

𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 
𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 

 

2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝑧𝑜 =
�̅�−𝜇0
𝜎

√𝑛⁄
. 

4. Find the P-value or rejection region: 

 𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 

 𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 

P-value 2𝑃(𝑍 ≥ |𝑧𝑜|) 𝑃(𝑍 ≥ 𝑧𝑜) 𝑃(𝑍 ≤ 𝑧𝑜) 

Rejection region 𝑍 ≥ 𝑧𝛼/2 or 𝑍 ≤ −𝑧𝛼/2 𝑍 ≥ 𝑧𝛼 𝑍 ≤ −𝑧𝛼 

𝑧𝛼/2  is the z value for which P(𝑍 > 𝑧𝛼/2) = 𝛼/2 
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5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝑧𝑜 falls in the rejection region. 
6. Conclusions. 
 
A corresponding (𝟏 − 𝜶) × 𝟏𝟎𝟎% one-sample 𝒛 confidence interval is given by 
 

 Two-sided Interval Upper Tailed Interval Lower Tailed Interval 

 𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 

 𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 
(𝟏 − 𝜶) × 𝟏𝟎𝟎% CI (�̅� − 𝑧𝛼

2

𝜎

√𝑛
, �̅� + 𝑧𝛼

2

𝜎

√𝑛
) (�̅� − 𝑧𝛼

𝜎

√𝑛
 , ∞) (−∞, �̅� + 𝑧𝛼

𝜎

√𝑛
)  

Decision Reject 𝑯𝟎 if 𝝁𝟎 is outside the interval 

 
Interpretation of the confidence interval: we can be (1 − 𝛼) × 100% confident that the population 

mean 𝜇 is within the interval.  

5.2 ONE-SAMPLE 𝒕 TEST AND INTERVAL WHEN THE POPULATION STANDARD DEVIATION IS 

UNKNOWN 
Given that the population is normal OR the sample size 𝑛 is large enough, the sample mean �̅� can be 

regarded to be normally distributed, i.e., �̅�~𝑁(𝜇,
𝜎

√𝑛
).  

The population standard deviation 𝜎 is usually unknown and can be estimated by the sample standard 

deviation 𝑠.  

When the population distribution is normal, the standardized variable 𝑍 =
�̅�−𝜇

𝜎

√𝑛

~𝑁(0, 1) . 

When the population distribution is normal, the studentized variable 

 𝑡 =
�̅�−𝜇

𝑠

√𝑛

~𝑡 distribution with 𝑑𝑓 = 𝑛 − 1.  

The assumptions and steps to conduct a one-sample 𝑡 test and 𝑡 interval for one population mean 𝜇 are 

as follows. 

Assumptions:  

1. A simple random sample (SRS) 
2. Normal population or large sample size (𝑛 ≥ 30) 
3. The population standard deviation 𝜎 is unknown 

 

Steps:  

1. Set up the hypotheses: 

𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 
𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 

 

2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝑡𝑜 =
�̅�−𝜇0
𝑠

√𝑛⁄
 with 𝑑𝑓 = 𝑛 − 1. 

4. Find the P-value or rejection region: 
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 𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 

 𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 

P-value 2𝑃(𝑡 ≥ |𝑡𝑜|) 𝑃(𝑡 ≥ 𝑡𝑜) 𝑃(𝑡 ≤ 𝑧𝑜) 

Rejection region 𝑡 ≥ 𝑡𝛼/2 or 𝑡 ≤ −𝑡𝛼/2 𝑡 ≥ 𝑡𝛼 𝑡 ≤ −𝑡𝛼 

𝑡𝛼/2  is the t value for which  P(𝑡 > 𝑡𝛼/2) = 𝛼/2 . 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝑡𝑜 falls in the rejection region. 
6. Conclusions. 
 

 Two-sided Interval for 
Two-sided Test 

Upper Tailed Interval 
for Right Tailed Test 

Lower Tailed Interval 
for Left Tailed Test 

 𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 ≤ 𝜇0 𝐻0: 𝜇 ≥ 𝜇0 

 𝐻𝑎: 𝜇 ≠ 𝜇0 𝐻𝑎: 𝜇 > 𝜇0 𝐻𝑎: 𝜇 < 𝜇0 
(𝟏 − 𝜶) × 𝟏𝟎𝟎% CI (�̅� − 𝑡𝛼

2

𝑠

√𝑛
, �̅� + 𝑡𝛼

2

𝑠

√𝑛
) (�̅� − 𝑡𝛼

𝑠

√𝑛
 , ∞) (−∞, �̅� + 𝑡𝛼

𝑠

√𝑛
)  

Decision Reject 𝑯𝟎 if 𝝁𝟎 is outside the interval 

 

Interpretation of the confidence interval: we can be (1 − 𝛼) × 100% confident that the population 

mean 𝜇 is within the interval. 

NUANCE: Students should note that although the Central Limit Theorem tells us that for any unknown 

population distribution shape with large n, the sampling distribution of Z= 
�̅�−𝜇

𝜎

√𝑛

is approximately normal, it 

actually does not tell us that for any unknown population distribution shape with large n, t=
�̅�−𝜇

𝑠

√𝑛

 is approximately 

normal or approximately a t distribution.   
 
However, it is sensible to think that s will be close to sigma (a good estimate) when n is large, and therefore that 

t values calculated will be close to z values when n is large. So it is not untoward to think that 
�̅�−𝜇

𝑠

√𝑛

values will be 

approximately 
�̅�−𝜇

𝜎

√𝑛

values for large n and thus the sampling distribution will indeed have a normal shape 

(regardless of the parent population shape).  
We also note that a t distribution with n – 1 degrees of freedom is approximately normal for large n.  
 

Some textbooks suggest that students doing problems that entail finding the test statistic t = 
�̅�−𝜇

𝑠

√𝑛

 proceed to 

calculate p-values and rejection region critical values using the standard normal distribution, Z.  This is useful 
because t tables are not comprehensive when n >=30.  
 

Other textbooks suggest that students doing problems that entail finding the test statistic t = 
�̅�−𝜇

𝑠

√𝑛

 use the t 

distribution with n – 1 df to calculate p-values and rejection region critical values when n is large. This is generally 
just fine because these values can be readily calculated online. 
 
The software R Commander finds p values and critical values for a t distribution with n – 1 degrees of freedom 
when you use it to do a single sample t test.  
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Example: A machine fills beer into bottles whose volume is supposed to be 341 ml, but the exact 

amount varies from bottle to bottle. We randomly pick 50 bottles and actual volume of each bottle is 

given in the data file. The sample mean volume is 338.428 ml and sample standard deviation 𝑠 = 5.238 

ml.   

343.8 339.8 347.3 348.4 338.1 333.1 345.8 342.7 341.0 336.5 

338.6 337.8 339.2 341.7 339.0 343.0 333.4 332.8 337.1 338.0 

338.8 331.3 343.6 331.8 338.4 345.3 333.7 344.4 337.0 347.0 

336.0 341.4 330.5 328.7 340.8 337.4 336.9 326.4 344.3 329.2 

334.4 339.6 341.5 334.2 333.0 337.8 343.3 337.4 346.4 333.8 

 

Note: the data were generated from a normal distribution with mean 339 and standard deviation 5 with 

random number generator seed 4067, rounded to one decimal place. 

For this problem, please download the dataset beer.xlsx from online.   Then import it into R commander 

and called it beer, say.  

 

(a) Test at the 5% significance level whether the machine is NOT working properly. 

(b) Obtain a 95% confidence interval for the population mean volume. Interpret the interval. 

(c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)? 

(d) Test at the 1% significance level whether the mean volume is below 341 ml. 

Check the assumptions:  

• We have a simple random sample. 

• We have a large sample with sample size 𝑛 = 50 > 30; therefore, it does not matter whether 

the population is normal or not. However, we can draw a normal probability (Q-Q) plot, a 

histogram, and a boxplot to check the normality of the sample data.  For your imported dataset 

called beer, use the Graphs→Histogram, Graphs→boxplot, and Graphs→Quantile-comparison 

plot commands. All the graphs of the summarized sample data shown below suggest (or do not 

contradict) that the sample data was taken from a normal population.  

 

Please note that the best way to check the normality assumption is a normal Q-Q plot, especially 

when the sample size is not very large. In general, a boxplot cannot show whether the data are 

from a normal population. A histogram can be misleading and cannot show whether the data 

have a bell-shaped distribution when the sample size is not large enough. 

• The population standard deviation 𝜎 is unknown. 

 

The assumptions for a one-sample 𝑡 test are met.  
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To run a one-sample 𝑡 test in R Commander: 

1. Statistics→Means→Single-sample t test 

2. In the “Single-Sample t-Test” window, pick “Volume” as the variable. Choose the alternative 

hypothesis: two-tailed (!=mu0). Specify the hypothesized value “mu=341”, i.e., 𝜇0 = 341. 

Specify the “Confidence Level: 0.95”, i.e., the significance level 𝛼 = 0.05. 

3. Click OK 
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(a) Test at the 5% significance level whether the machine is NOT working properly. 

If the machine is working properly, 𝜇 = 341 ml; if the machine is not working properly, 𝜇 ≠ 341 ml. 

The steps for a one-sample 𝑡 test are: 

• Hypotheses.  𝐻0: 𝜇 = 341 ml versus 𝐻𝑎: 𝜇 ≠ 341 ml 

• The significance level is 𝛼 = 0.05. 

• Compute the value of the test statistic: 𝑡𝑜 =
�̅�−𝜇0
𝑠

√𝑛⁄
= −3.4718, with 𝑑𝑓 = 𝑛 − 1 = 49 

• The P-value= 2𝑃(𝑡 ≥ |𝑡𝑜|) = 2𝑃(𝑡 ≥ 3.4718) = 0.001089 

• Since P-value=0.001089 < 0.05 (𝛼), reject 𝐻0. 

• Conclusion: At the 5% significance level, the data provide sufficient evidence that the 

machine is NOT working properly. 

(b) Obtain a 95% confidence interval for the population mean volume. Interpret the interval. 

A 95% confidence interval for the population mean volume is (336.9392, 339.9168) ml.  

Interpretation: we can be 95% confident that the population mean volume 𝜇 is somewhere 

between 336.9392 ml and 339.9168 ml. 

(c) Does the confidence interval obtained in part (b) support the conclusion of the test in part (a)? 

Yes. In part (a), we reject 𝐻0 and claim that the machine is not working properly, i.e., 𝜇 ≠ 341 ml. In 

part (b), the interval does not contain 341; therefore, we can be 95% confident that 𝜇 ≠ 341 ml and 

it supports the conclusion of the hypothesis test in part (a). 

 

(d) Test at the 1% significance level whether the mean volume is below 341 ml. 

 

 

Output 

 

 

• Hypotheses.  𝐻0: 𝜇 ≥ 341 ml versus 𝐻𝑎: 𝜇 < 341 ml 

• The significance level is 𝛼 = 0.01. 

• Compute the value of the test statistic: 𝑡𝑜 =
�̅�−𝜇0
𝑠

√𝑛⁄
= −3.4718, with 𝑑𝑓 = 𝑛 − 1 = 49 

• The P-value= 𝑃(𝑡 < 𝑡𝑜) = 𝑃(𝑡 < −3.3718) = 𝑃(𝑡 ≥ 3.4718) = 0.0005447 

• Since P-value=0.0005447 < 0.01 (𝛼), reject 𝐻0. 

• Conclusion: At the 1% significance level, the data provide sufficient evidence that the mean 

volume is below 341 ml. 

(e) Obtain a confidence interval corresponding to the test in part (d). Does the interval support the 

conclusion of the test in part (d)? 
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A left-tailed test at the 1% significant level corresponds to a 99% lower-tailed confidence interval. A 99% 

lower-tailed confidence interval for the population mean volume is (−∞, �̅� + 𝑡𝛼
𝑠

√𝑛
) = (−∞, 340.2096).  

Interpretation: we can be 99% confident that the population mean volume 𝜇 is somewhere below 

340.2096 ml. Since the entire interval is below 341, we can claim that 𝜇 < 341 ml. This supports the 

conclusion of the hypothesis test in part (d). 

5.3 RELATION BETWEEN CONFIDENCE INTERVAL AND HYPOTHESIS TESTS 
Recall: 

Two-sided confidence intervals correspond to two-tailed tests, upper-tailed confidence intervals 

correspond to right-tailed tests, and lower-tailed confidence intervals correspond to left-tailed tests.  

A (1 − 𝛼) × 100% two-sided 𝑡 confidence interval is given in the form (�̅� − 𝑡𝛼

2

𝑠

√𝑛
, �̅� + 𝑡𝛼

2

𝑠

√𝑛
).  

A (1 − 𝛼) × 100% upper-tailed 𝑡 confidence interval is given by (�̅� − 𝑡𝛼
𝑠

√𝑛
 , ∞) and the number �̅� −

𝑡𝛼
𝑠

√𝑛
 is called the lower bound of the interval.  

A (1 − 𝛼) × 100% lower-tailed 𝑡 confidence interval is given by (−∞, �̅� + 𝑡𝛼
𝑠

√𝑛
) and the number (�̅� +

𝑡𝛼
𝑠

√𝑛
) is called the upper bound of the interval.  

Remember: 

We can use the confidence intervals to make conclusions about hypothesis tests: reject the null 

hypothesis 𝐻0 at the significance level 𝛼 if the corresponding (1 − 𝛼) × 100% confidence interval does 

not contain the hypothesized value 𝜇0. 

Confidence interval (CI) and hypothesis testing (HT) should give consistent results: we should not reject 

𝐻0 at the significance level 𝛼 if the corresponding (1 − 𝛼) × 100% confidence interval contains the 

hypothesized value 𝜇0.  

 

 

  



67 

LAB 6 CONFIDENCE INTERVAL & HYPOTHESIS TESTS FOR TWO MEANS 

Suppose we have two populations with means 𝜇1 and 𝜇2 respectively. This lab covers how to obtain a 

confidence interval and conduct a hypothesis test for the difference between the two population 

means, i.e., 𝜇1 − 𝜇2, using R commander. Depending on whether the two samples are independent or 

paired, we have a two-sample 𝑡 test or a paired 𝑡 test, respectively. 

6.1 TWO-SAMPLE 𝒕 TEST AND 𝒕 INTERVAL BASED ON TWO INDEPENDENT SAMPLES 
The two-sample 𝑡 test can be used to test hypotheses on the difference between two population means. 
Depending on whether the two population standard deviations (𝜎1 and 𝜎2) are equal or not, we use the 
non-pooled and pooled two sample 𝑡 test and 𝑡 interval, respectively. Minor advantages of the pooled 𝑡 
test are that it provided a slightly narrower confidence interval, a slightly more powerful test, and a 
simpler formula for the degrees of freedom. However, a pooled 𝑡 test is valid only when the two 
population standard deviations are identical; otherwise, it gives invalid results. Therefore, we 
recommend using the non-pooled 𝑡 test unless we are very confident that 𝜎1 = 𝜎2 (which is very 
difficult to verify). 

6.1.1 Non-pooled Two-Sample 𝒕 Test and 𝒕 Interval  

Assumptions: 

1. Simple random samples; 

2. Two samples are independent; 

3. Normal populations or large sample sizes (rule of thumb: 𝑛1 ≥ 30, 𝑛2 ≥ 30). 

 

Steps:  

1. Set up the hypotheses: 

Two tailed test Right (upper) tailed test Left (lower) tailed test 

𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 
𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎: 𝜇1 − 𝜇2 < Δ0 

 
Note that Δ0 can be zero or any value you would like to test.  

2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝑡𝑜 =
(�̅�1−�̅�2)−Δ0

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 with 𝑑𝑓 =
(

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)

2

1

𝑛1−1
(

𝑠1
2

𝑛1
)

2

+
1

𝑛2−1
(

𝑠2
2

𝑛2
)

2  rounded down 

to the nearest integer, i.e., take the integer part. 
 

4. Find the P-value or rejection region: 

 𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎: 𝜇1 − 𝜇2 < Δ0 

P-value 2𝑃(𝑡 ≥ |𝑡𝑜|) 𝑃(𝑡 ≥ 𝑡𝑜) 𝑃(𝑡 ≤ 𝑡𝑜) 

Rejection region 𝑡 ≥ 𝑡𝛼/2 or 𝑡 ≤ −𝑡𝛼/2 𝑡 ≥ 𝑡𝛼 𝑡 ≤ −𝑡𝛼 
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5. Decision: reject the null 𝐻0 if P-value≤ 𝛼 or if 𝑡𝑜 falls in the rejection region. 
6. Conclusions. 

A (1 − 𝛼) × 100% two-sample 𝑡 confidence interval for 𝜇1 − 𝜇2 is: 

 Two-sided Interval for 
Two-sided Test 

Upper Tailed Interval 
for Right Tailed Test 

Lower Tailed Interval 
for Left Tailed Test 

 𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎: 𝜇1 − 𝜇2 < Δ0 

Interval 

(�̅�1 − �̅�2) ± 𝑡𝛼/2√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
 

 

((�̅�1 − �̅�2) − 𝑡𝛼√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
 , ∞) (−∞, (�̅�1 − �̅�2) + 𝑡𝛼√

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
  ) 

Decision Reject 𝑯𝟎 if 𝚫𝟎 is outside the interval 

 

Example: Two-sample 𝒕 Test and 𝒕 Interval Assuming Standard Deviations Not Equal 

Some students attend class regularly, but some do not. An instructor wants to compare the class 

average for those who attend lectures regularly (𝜇1) with those who do not (𝜇2). Simple random 

samples are randomly selected from attendees and non-attendees. Their attending status (Attend/Non-

Attend) and final grade (in %) are given in the following table (grades to 2 decimals places). Data are 

stored in “example_twosample_grade.xlsx”, which can be found online, and has 13 decimal places for 

grades.  Note that practising students should download the online file and use it, as typing or 

copying/pasting the data shown below to their own Excel file and using it (with grades to 2 decimal 

places) will not yield the answers found in the descriptions and inference done below. 

Attend 69.68 Attend 77.56 Attend 65.03 Attend 89.30 Attend 87.75 

Non-Attend 61.21 Non-Attend 64.76 Non-Attend 65.04 Attend 68.54 Non-Attend 35.62 

Attend 80.43 Attend 66.01 Attend 57.08 Attend 71.24 Attend 96.51 

Attend 80.97 Attend 78.10 Attend 95.86 Attend 49.19 Non-Attend 65.81 

Non-Attend 60.74 Attend 95.54 Attend 83.32 Non-Attend 39.30 Attend 82.82 

Attend 83.34 Attend 67.50 Attend 74.53 Non-Attend 78.46 Attend 83.00 

Attend 72.03 Attend 93.30 Attend 55.24 Attend 81.23 Non-Attend 42.94 

Non-Attend 77.11 Attend 85.03 Attend 76.27 Non-Attend 80.67 Attend 80.14 

Attend 75.49 Non-Attend 82.50 Attend 74.76 Non-Attend 64.32 Attend 79.47 

Attend 75.03 Non-Attend 54.10 Attend 61.58 Attend 47.77 Attend 72.49 

Attend 90.86 Non-Attend 78.71 Attend 62.91 Attend 93.26 Non-Attend 85.07 

Attend 86.87 Non-Attend 47.67 Non-Attend 51.30 Non-Attend 70.68 Non-Attend 55.65 

Attend 96.32 Attend 76.51 Attend 77.06 Attend 68.40 Attend 72.66 

Attend 50.62 Attend 85.97 Attend 80.24 Non-Attend 39.39 Attend 90.25 

Attend 83.13 Attend 85.19 Attend 70.16 Attend 68.12 Attend 87.75 

Non-Attend 72.80 Attend 78.40 Attend 66.06 Attend 86.51 Non-Attend 55.38 

Attend 71.22 Non-Attend 67.34 Non-Attend 42.39 Non-Attend 87.30 Non-Attend 80.88 
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(a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data. 

(b) Test at the 1% significance level whether those who attend lectures have a higher average, i.e.,  

𝜇1 > 𝜇2 or 𝜇1 − 𝜇2 > 0. 

(c) Obtain a confidence interval for the difference between the class average for attendees and non-
attendees, 𝜇1 − 𝜇2, that corresponds to the test in part (b). 

(d) Based on the interval obtained in part (c), can we claim that the class average of attendees is at least 
5% higher than that of the non-attendees? How about 10% higher? 

Solutions: 

(a) Use the proper descriptive statistics tools (figures and numerical summaries) to summarize the data. 

We want to compare the grade between attendants and non-attendants. Note that grade is a 

quantitative continuous variable.  Hence, to compare the two groups numerically, we use the five-

number summary (min, 𝑄1, median, 𝑄3, max) , mean and standard deviation for each group, while 

graphically, we use a side-by-side histogram and/or a side-by-side boxplot. 

1. Statistics→Summaries→Numerical Summaries... 

2. In the “Numerical Summaries” window, select “Grade” as the variable. 

3. Click “Summarize by groups…”, in the “Groups” window, choose “Attend” as the grouping 

variable. Click OK 

4. Click “Statistics”, check “Mean”, “Standard Deviation”, “Interquartile Range”, and “Quantiles”, 

click OK. 

 

 
 

 

 

Here are the findings from the numerical summaries: 

 

1. There are 𝑛1 = 58 attendees and 𝑛2 = 27 non-attendees. 

2. The sample mean for the attendees is �̅�1 = 76.925%. The sample mean for the non-attendees 

is �̅�2 = 63.228%, which is 13.697% lower than the mean of the attendees. The attendees also 

have a larger median (50% quantile) than their non-attendees counterpart, 77.830% versus 
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64.762% (that is; the median for the non-attendees is 13.068% lower than the median for the 

attendees). 

3. The sample standard deviation for the attendees is 𝑠1 = 11.827% and the sample standard 

deviation for the non-attendees is 𝑠2 = 15.480%. There is a larger variation in grade among 

non-attendees. This can be also found through the IQR. The IQR is 15.353% for attendees and 

25.084% for non-attendees. 

4. The attendees have a larger maximum grade than non-attendees, 96.514% versus 87.295%; the 

attendees also have a higher minimum grade, 47.769% versus 35.621%. 

 

All the findings above can be also seen from the plots created below. 

 

 

Steps for side-by-side histogram 
 
1. Graphs→Histogram... 
2. In the “Histogram” window, select 

“Grade” as the variable 
3. Click “Plot by groups…”, in the 

“Groups” window, choose 
“Attend” as the grouping variable. 
Click OK 

4. Click OK 
 

 

 

Steps for side-by-side boxplot 
 
1. Graphs→Boxplot... 
2. In the “Boxplot” window, select 

“Grade” as the variable 
3. Click “Plot by groups…”, in the 

“Groups” window, choose 
“Attend” as the grouping 
variable. Click OK 

4. Click OK 
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(b) Test at the 1% significance level whether those who attend lectures have a higher average, i.e.,  

𝜇1 > 𝜇2 or 𝜇1 − 𝜇2 > 0. 

Use a two-sample 𝑡 test since the samples (the attendees and the non-attendees) are independent. 

1. Statistics→Means→Independent Sample t-Test... 

2. In the “Independent Sample t-Test” window, select “Attend” as the grouping variable and 

“Grade” as the response variable, since we want to compare the grades between attendants 

and non-attendants. 

3. Click “Options”, in the “Options” window, choose “Difference>0” as the Alternative Hypothesis, 

because we want to test whether 𝜇1 > 𝜇2 or the difference 𝜇1 − 𝜇2 > 0. Type 0.99 in the box 

under “Confidence Level”, since the significance level 𝛼 = 0.01 which corresponds to a 

confidence level 1 − 𝛼 = 1 − 0.01 = 0.99. Check “No” under “Assume equal variances” for a 

non-pooled two-sample 𝑡 test. Click OK. 

4. Click OK 
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Steps: 

• Hypotheses.  𝐻0: 𝜇1 − 𝜇2 ≤ 𝟎 ml versus 𝐻𝑎: 𝜇1 − 𝜇2 > 0 

• The significance level is 𝛼 = 0.01. 

• Compute the value of the test statistic: 𝑡𝑜 =
(�̅�1−�̅�2)−Δ0

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

=
(�̅�1−�̅�2)−𝟎

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

= 4.077, with degrees 

of freedom 𝑑𝑓 =
(

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)

2

1

𝑛1−1
(

𝑠1
2

𝑛1
)

2

+
1

𝑛2−1
(

𝑠2
2

𝑛2
)

2 = 40.68 

• The P-value= 𝑃(𝑡 > 𝑡𝑜) = 𝑃(𝑡 > 4.077) = 0.0001032 

• Since P-value=0.0001032 < 0.01 (𝛼), reject 𝐻0. 

• Conclusion: At the 1% significance level, the data provide sufficient evidence that those who 

attend lectures have a higher average. 

 

(c) Obtain a confidence interval for the difference between the class average for attendees and non-
attendees 𝜇1 − 𝜇2 corresponding to the test in part (b). 
 
For a right-tailed test at significance level 𝛼 = 0.01, the corresponding confidence interval is a 
(1 − 𝛼) × 100% = 99% upper-tailed confidence interval. Based on the computer output above, a 
99% confidence interval is  

((�̅�1 − �̅�2) − 𝑡𝛼√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
 , ∞) = (5.5615, ∞). 

Interpretation: we can be 99% confident that the difference between the class average for 
attendees and non-attendees 𝜇1 − 𝜇2 is at least 5.5615%, i.e., we can be 99% confident that the 
class average for attendees is at least 5.5615% higher than that of the non-attendees. 
 

(d) Based on the interval obtained in pat (c), can we claim that the class average of attendees is at least 
5% higher than that of the non-attendees? How about 10% higher? 
 
We can claim that the class average of attendees is at least 5% higher than that of the non-
attendees since the entire interval for 𝜇1 − 𝜇2 is above 5%, that is, 𝜇1 − 𝜇2 > 5 with Δ0 = 5. 
 
We can not claim that the class average of attendees is at least 10% higher than that of the non-
attendees since the entire interval contains 10. Therefore, we do not have sufficient evidence to 
claim 𝜇1 − 𝜇2 > 10 where Δ0 = 10. 
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  0                               5    5.5615                               10                      ∞                                                             
                                  
                                                                              𝜇1 − 𝜇2 > 5.5615 
 

6.1.2 Pooled Two-Sample 𝒕 Test and 𝒕 Interval  

If the two population standard deviations are equal, i.e., 𝜎1 = 𝜎2 = 𝜎, we can pool the two samples 
together to get a better estimate of the common standard deviation 𝜎 

�̂� = 𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

(𝑛1 − 1) + (𝑛2 − 1)
 

where the term (𝑛1 − 1)𝑠1
2 = ∑ (𝑥 − �̅�1)2

𝑠𝑎𝑚𝑝𝑙𝑒 1  is the variation of the data within sample 1, and 

(𝑛2 − 1)𝑠2
2 = ∑ (𝑥 − �̅�2)2

𝑠𝑎𝑚𝑝𝑙𝑒 2  is the variation of the data within sample 2. Recall that the standard 

deviation of �̅�1 − �̅�2 is 𝜎�̅�1−�̅�2
= √

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
. Thus, if 𝜎1 = 𝜎2 = 𝜎, then 𝜎�̅�1−�̅�2

 reduces to √
𝜎2

𝑛1
+

𝜎2

𝑛2
=

𝜎√
1

𝑛1
+

1

𝑛2
. Estimating 𝜎 with 𝑠𝑝 leads to the pooled test statistic: 

𝑡 =
(�̅�1 − �̅�2) − (𝜇1 − 𝜇2)

𝑠𝑝√
1

𝑛1
+

1
𝑛2

~𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

with 𝑑𝑓 = (𝑛1 − 1) + (𝑛2 − 1) = 𝑛1 + 𝑛2 − 2. 

The assumption 𝜎1 = 𝜎2 is very difficult to verify. Some textbooks suggest a rule of thumb: if the ratio of 
the larger to the smaller sample standard deviation is less than 2, then the assumption is considered to 

be met, i.e., 
max {𝑠1, 𝑠2}

min {𝑠1, 𝑠2}
< 2. The assumptions and steps for a two-sample pooled 𝑡 test are as follows. 

Assumptions:  

1. Simple random samples; 

2. Two samples are independent; 

3. Normal populations or large samples (𝑛1 ≥ 30, 𝑛2 ≥ 30); 

4. Equal standard deviation 
max {𝑠1, 𝑠2}

min {𝑠1, 𝑠2}
< 2. 

 

Steps:  

1. Set up the hypotheses: 

Two tailed test Right (upper) tailed test Left (lower) tailed test 

𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 
𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎: 𝜇1 − 𝜇2 < Δ0 

 
Note that Δ0 can be zero or any value you would like to test. 
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2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝑡𝑜 =
(�̅�1−�̅�2)−Δ0

𝑠𝑝√
1

𝑛1
+

1

𝑛2

  with 𝑑𝑓 = 𝑛1 + 𝑛2 − 2. 

4. Find the P-value or rejection region: 

 𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎: 𝜇1 − 𝜇2 < Δ0 

P-value 2𝑃(𝑡 ≥ |𝑡𝑜|) 𝑃(𝑡 ≥ 𝑡𝑜) 𝑃(𝑡 ≤ 𝑡𝑜) 

Rejection region 𝑡 ≥ 𝑡𝛼/2 or 𝑡 ≤ −𝑡𝛼/2 𝑡 ≥ 𝑡𝛼 𝑡 ≤ −𝑡𝛼 

 
5. Decision: reject the null 𝐻0 if P-value≤ 𝛼 or 𝑡𝑜 falls in the rejection region. 
6. Conclusions. 

A (1 − 𝛼) × 100% two-sample pooled 𝑡 confidence interval for 𝜇1 − 𝜇2 is: 

 Two-sided Interval for 
Two-sided Test 

Upper Tailed Interval 
for Right Tailed Test 

Lower Tailed Interval 
for Left Tailed Test 

 𝐻0: 𝜇1 − 𝜇2 = Δ0 𝐻0: 𝜇1 − 𝜇2 ≤ Δ0 𝐻0: 𝜇1 − 𝜇2 ≥ Δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ Δ0 𝐻𝑎: 𝜇1 − 𝜇2 > Δ0 𝐻𝑎 : 𝜇1 − 𝜇2 < Δ0 

Interval 

(�̅�1 − �̅�2) ± 𝑡𝛼/2 × 𝑠𝑝√
1

𝑛1

+
1

𝑛2

 ((�̅�1 − �̅�2) − 𝑡𝛼 × 𝑠𝑝√
1

𝑛1

+
1

𝑛2

 , ∞) (−∞, (�̅�1 − �̅�2) + 𝑡𝛼 × 𝑠𝑝√
1

𝑛1

+
1

𝑛2

 ) 

Decision Reject 𝑯𝟎 if 𝚫𝟎 is outside the interval 

 

Example: Pooled two-sample 𝒕 Test and Interval 

Is it reasonable to conduct a pooled two-sample 𝑡 test to test whether those who attend lectures have a 

higher average? If yes, conduct the test at the 1% significance level. 

Since 
max {𝑠1, 𝑠2}

min {𝑠1, 𝑠2}
=

max {11.827,15.480}

mix {11.827,15.480}
=

15.480

11.827
< 2, it is reasonable to conduct a pooled two-sample 𝑡 test. 

1. Statistics→Means→Independent Sample t-Test... 

2. In the “Independent Sample t-Test” window, select “Attend” as the grouping variable and “Grade” 

as the response variable, since we want to compare the grades between attendants and non-

attendants. 

3. Click “Options”, in the “Options” window, choose “Difference>0” as the Alternative Hypothesis. 

Type 0.99 in the box under “Confidence Level”. Check “Yes” under “Assume equal variances” for a 

pooled two-sample 𝑡 test. Click OK. 

4. Click OK 
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Steps: 

• Hypotheses.  𝐻0: 𝜇1 − 𝜇2 ≤ 𝟎 ml versus 𝐻𝑎: 𝜇1 − 𝜇2 > 0 

• The significance level is 𝛼 = 0.01. 

• Compute the value of the test statistic: 𝑡𝑜 =
(�̅�1−�̅�2)−Δ0

𝑠𝑝√
1

𝑛1
+

1

𝑛2

=
(�̅�1−�̅�2)−𝟎

𝑠𝑝√
1

𝑛1
+

1

𝑛2

= 4.4942, with degrees 

of freedom 𝑑𝑓 = 𝑛1 + 𝑛2 − 2 = 58 + 27 − 2 = 83. 

• The P-value= 𝑃(𝑡 > 𝑡𝑜) = 𝑃(𝑡 > 4.4942) = 0.00001121. 

• Since P-value=0.00001121 < 0.01 (𝛼), reject 𝐻0. 

• Conclusion: At the 1% significance level, the data provide sufficient evidence that those who 

attend lectures have a higher average. 

The corresponding 99% upper-tailed interval is (6.4675, ∞). The result is very similar to that of a non-

pooled two-sample 𝑡 test. 

6.1.3 Non-Pooled Versus Pooled Two-Sample 𝒕 Test 

Now, it comes to the question: shall we use pooled or non-pooled t-test?  

The advantages of the pooled 𝑡 test are: 

• A much simpler formula to calculate the degrees of freedom; 

• A slightly narrower confidence interval and a slightly more powerful test. 

 

However, the pooled 𝑡 test is valid only when the standard deviations of two groups are the same; 

otherwise, the pooled method gives misleading results.   

 

It is even harder to test whether the two standard deviations are equal or not. Therefore, we 

recommend using the non-pooled two-sample 𝑡 test by default; apply the pooled two-sample 𝑡 test only 

if you are very confident that the two standard deviations are the same.  
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6.2 PAIRED 𝒕 TEST AND 𝒕 INTERVAL BASED ON PAIRED SAMPLE 
Two samples are considered paired if each observation in the first sample is related to one and 

only one observation in the second sample. A paired 𝑡 test and a paired 𝑡 interval are exactly a 

one-sample 𝑡 test and a one-sample 𝑡 interval on the paired differences respectively. 

Assumptions:  

1. The paired difference 𝑑𝑖 , 𝑖 = 1, ⋯ , 𝑛 is a simple random sample (SRS) from all possible pairs 
2. The paired differences follow a normal distribution or large number of pairs (𝑛 ≥ 30) 

 
Steps:  

 

1. Set up the hypotheses: 
 

𝐻0: 𝜇1 − 𝜇2 = δ0 𝐻0: 𝜇1 − 𝜇2 ≤ δ0 𝐻0: 𝜇1 − 𝜇2 ≥ δ0 
𝐻𝑎: 𝜇1 − 𝜇2 ≠ δ0 𝐻𝑎: 𝜇1 − 𝜇2 > δ0 𝐻𝑎: 𝜇1 − 𝜇2 < δ0 

 

Note: δ0 can be any value tested, in most cases δ0 = 0. Some textbooks state the hypotheses using 

𝜇𝑑 = 𝜇1 − 𝜇2. 

2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝑡𝑜 =
�̅�−𝛿0
𝑠𝑑

√𝑛
⁄

 with degree of freedom 𝑑𝑓 = 𝑛 − 1, where 𝑛 is 

the number of pairs and  

�̅� =
∑ 𝑑𝑖

𝑛
, 𝑠𝑑 = √(∑ 𝑑𝑖

2)−
(∑ 𝑑𝑖)

2

𝑛

𝑛−1
. 

4. Find the P-value or rejection region: 
 

 𝐻0: 𝜇1 − 𝜇2 = δ0 𝐻0: 𝜇1 − 𝜇2 ≤ δ0 𝐻0: 𝜇1 − 𝜇2 ≥ δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ δ0 𝐻𝑎: 𝜇1 − 𝜇2 > δ0 𝐻𝑎: 𝜇1 − 𝜇2 < δ0 

P-value 2𝑃(𝑡 ≥ |𝑡𝑜|) 𝑃(𝑡 ≥ 𝑡𝑜) 𝑃(𝑡 ≤ 𝑡𝑜) 

Rejection region 𝑡 ≥ 𝑡𝛼/2 or 𝑡 ≤ −𝑡𝛼/2 𝑡 ≥ 𝑡𝛼 𝑡 ≤ −𝑡𝛼 

 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝑡𝑜 falls in the rejection region. 
6. Conclusions. 
 

A (1 − 𝛼) × 100% confidence interval for 𝜇𝑑 = 𝜇1 − 𝜇2 corresponding to a hypothesis test at the 

significance level 𝛼 is: 

 𝐻0: 𝜇1 − 𝜇2 = δ0 𝐻0: 𝜇1 − 𝜇2 ≤ δ0 𝐻0: 𝜇1 − 𝜇2 ≥ δ0 

 𝐻𝑎: 𝜇1 − 𝜇2 ≠ δ0 𝐻𝑎: 𝜇1 − 𝜇2 > δ0 𝐻𝑎: 𝜇1 − 𝜇2 < δ0 
(1 − 𝛼) × 100% CI (�̅� − 𝑡𝛼

2

𝑠𝑑

√𝑛
, �̅� + 𝑡𝛼

2

𝑠𝑑

√𝑛
) (�̅� − 𝑡𝛼

𝑠𝑑

√𝑛
 , ∞) (−∞, �̅� + 𝑡𝛼

𝑠𝑑

√𝑛
) 

Decision Reject 𝐻0 if 𝛿0 is outside the interval 
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Example: Paired 𝒕 Test and Paired 𝒕 Interval 

Eleven people participate in a diet program, their weights in pounds before and after taking the program 

are listed below.  Please download the file pair_diet.xlxs from online and import it into R commander. 

Before 
(in lb) 

After 
(in lb) 

Paired Differences 
𝒅𝒊 = 𝐁𝐞𝐟𝐨𝐫𝐞 − 𝐀𝐟𝐭𝐞𝐫 

130 100 30 

140 115 25 

160 140 20 

110 115 -5 

120 120 0 

150 130 20 

160 130 30 

100 110 -10 

180 140 40 

200 150 50 

130 120 10 

 

(a) Test atthe 1% significance level whether the diet program is effective in reducing weight. 

(b) Obtain a confidence interval corresponding to the test in part (a). 

(c) Does the interval in part (b) support the conclusion in part (a)? 

(d) Is it possible to claim that on average the diet program can reduce weight by more than 5 pounds? 

Explain why. 

Check the assumptions: 

1. We have a simple random sample in the paired differences. 

2. We have eleven pairs, not a large number of pairs (𝑛 < 30). Therefore, we need to check 

whether the paired differences are taken from a normal population. 

Draw a normal probability plot on the sample of paired differences and look for a straight line. 

1. Import the data. Data→Import data→from Excel file pair_diet.xlsx (name it “diet”) 

2. Graphs→Quantile-comparison plot… 

In the “Quantile-Comparison (QQ) Plot” window, choose “Difference” as the variable to plot. 

Click OK. 
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Since all the points roughly lie on a straight line, we can assume that the paired differences are from a 

normal population.  Therefore, the assumptions for a paired 𝑡 test are satisfied. 

(a) Test at the 1% significance level whether the diet program is effective in reducing weight. 

1. Import the data. Data→Import data→from Excel file pair_diet.xlxs (name it “diet”) 

2. Statistics→Means→Paired t-Test... 

3. In the “Paired t-Test” window, select “Before” as the First variable and “After” as the second 

variable, since we define the paired difference as Before-After. 

4. Click “Options”, in the “Options” window, choose “Difference>0” as the Alternative Hypothesis. 

Type 0.99 in the box under “Confidence Level”. Click OK. 

5. Click OK 

 

  

 

 
 

Steps: 

• Hypotheses.  𝐻0: 𝜇𝐵 − 𝜇𝐴 ≤ 𝟎 versus 𝐻𝑎: 𝜇𝐵 − 𝜇𝐴 > 0. 

• The significance level is 𝛼 = 0.01. 

• Compute the value of the test statistic: 𝑡𝑜 =
�̅�−𝛿0
𝑠𝑑

√𝑛
⁄

= 3.3648, with degrees of freedom 𝑑𝑓 =

𝑛 − 1 = 11 − 1 = 10. 

• The P-value= 𝑃(𝑡 ≥ 𝑡𝑜) = 𝑃(𝑡 ≥ 3.3648) = 0.003592. 

• Since P-value=0.003592 < 0.01 (𝛼), reject 𝐻0. 

• Conclusion: At the 1% significance level, the data provide sufficient evidence that the diet 

program is effective in reducing weight. 

 

(b) Obtain a confidence interval corresponding to the test in part (a). 
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For a right-tailed test at significance level 𝛼 = 0.01, the corresponding confidence interval should 

be a 99% upper-tailed interval, which is (3.410302, ∞) from the computer output. 

 

(c) Does the interval in part (b) support the conclusion in part (a)? 

Yes. In part (a), we reject 𝐻0 and claim that 𝜇𝐵 − 𝜇𝐴 > 0. In part (b), since the interval does not 

contain δ0 = 0 and the entire interval is above 0, we can claim that 𝜇𝐵 − 𝜇𝐴 > 0 with 99% 

confidence, which supports the results obtained in part (b). 

 

(d) Is it possible to claim that on average the diet program can reduce more than 5 pounds? Explain 

why. 

Here we will test 𝐻0: 𝜇𝐵 − 𝜇𝐴 ≤ 5⏟
δ0=5

versus 𝐻𝑎: 𝜇𝐵 − 𝜇𝐴 > 5. Then δ0 = 5 in this question. The 

answer is “No”, since δ0 = 5  is within the interval (3.410302, ∞). Therefore, we cannot reject 

𝐻0: 𝜇𝐵 − 𝜇𝐴 ≤ 5⏟
δ0=5

and claim that on average the diet program can reduce weight by more than 5 

pounds. 
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LAB 7 INFERENCES FOR POPULATION PROPORTIONS 

In this lab, we focus on inferences for another population parameter: the population proportion 𝑝. The 

population proportion is defined as the proportion (or percentage) of a population that have a specified 

attribute. For example, proportion of times that athletes wearing blue uniforms win the Judo games; 

proportion of customers who respond to the advertisement; proportion of women who suffer arthritis.  

7.1 ONE-PROPORTION Z TEST & Z INTERVAL BASED ON ONE SAMPLE 
 

Assumptions:  

1. A simple random sample 

2. Both 𝑛𝑝0 and 𝑛(1 − 𝑝0) are at least 5. 

 

Steps: 

1. Set up the hypotheses: 

𝐻0: 𝑝 = 𝑝0 𝐻0: 𝑝 ≤ 𝑝0 𝐻0: 𝑝 ≥ 𝑝0 

𝐻𝑎: 𝑝 ≠ 𝑝0 𝐻𝑎: 𝑝 > 𝑝0 𝐻𝑎: 𝑝 < 𝑝0 

 

2. State the significance level 𝛼. 

3. Compute the test statistic: 𝑧𝑜 =
𝑝−𝑝0

√𝒑𝟎(1−𝒑𝟎)

𝑛

  with �̂� =
𝑥

𝑛
 where x is the total successes in n 

observations. 

 

4. Find the P-value or rejection region: 

 𝐻0: 𝑝 = 𝑝0 𝐻0: 𝑝 ≤ 𝑝0 𝐻0: 𝑝 ≥ 𝑝0 

 𝐻𝑎: 𝑝 ≠ 𝑝0 𝐻𝑎: 𝑝 > 𝑝0 𝐻𝑎: 𝑝 < 𝑝0 

P-value 2𝑃(𝑍 ≥ |𝑧𝑜|) 𝑃(𝑍 ≥ 𝑧𝑜) 𝑃(𝑍 ≤ 𝑧𝑜) 

Rejection region 𝑍 ≥ 𝑧𝛼/2 or 𝑍 ≤ −𝑧𝛼/2 𝑍 ≥ 𝑧𝛼 𝑍 ≤ −𝑧𝛼 

 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝑧𝑜 falls in the rejection region. 

6. Conclusions. 

 

A point estimate for the population proportion 𝑝 is the sample proportion �̂� =
𝑥

𝑛
.   A (1 − 𝛼) ×  100% 

confidence interval corresponding to a hypothesis test at the significance level 𝛼 for the population 

proportion 𝑝 are as shown in the table. 

 𝐻0: 𝑝 = 𝑝0 𝐻0: 𝑝 ≤ 𝑝0 𝐻0: 𝑝 ≥ 𝑝0 

 𝐻𝑎: 𝑝 ≠ 𝑝0 𝐻𝑎: 𝑝 > 𝑝0 𝐻𝑎: 𝑝 < 𝑝0 
(1 − 𝛼) × 100% CI 

�̂� ± 𝑧𝛼
2

√
�̂�(1 − �̂�)

𝑛
 (�̂� − 𝑧𝛼√

�̂�(1 − �̂�)

𝑛
, ∞) (−∞, �̂� + 𝑧𝛼√

�̂�(1 − �̂�)

𝑛
) 

Decision Reject 𝐻0 if 𝑝0 is outside the interval 
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Example: One-Proportion z Test and z Interval 

Revisit the data set about the effect of attending lecture on grades. There are two sections: AS02 and 

AS04. Some students attend lectures regularly and some do not in both sections. We are interested in 

the attendance rate.  

AS02 Attend AS02 Attend AS02 Attend AS04 Attend AS04 Attend 

AS02 Non-Attend AS02 Non-Attend AS02 Non-Attend AS04 Attend AS04 Non-Attend 

AS02 Attend AS02 Attend AS02 Attend AS04 Attend AS04 Attend 

AS02 Attend AS02 Attend AS02 Attend AS04 Attend AS04 Non-Attend 

AS02 Non-Attend AS02 Attend AS02 Attend AS04 Non-Attend AS04 Attend 

AS02 Attend AS02 Attend AS02 Attend AS04 Non-Attend AS04 Attend 

AS02 Attend AS02 Attend AS02 Attend AS04 Attend AS04 Non-Attend 

AS02 Non-Attend AS02 Attend AS02 Attend AS04 Non-Attend AS04 Attend 

AS02 Attend AS02 Non-Attend AS02 Attend AS04 Non-Attend AS04 Attend 

AS02 Attend AS02 Non-Attend AS02 Attend AS04 Attend AS04 Attend 

AS02 Attend AS02 Non-Attend AS02 Attend AS04 Attend AS04 Non-Attend 

AS02 Attend AS02 Non-Attend AS02 Non-Attend AS04 Non-Attend AS04 Non-Attend 

AS02 Attend AS02 Attend AS04 Attend AS04 Attend AS04 Attend 

AS02 Attend AS02 Attend AS04 Attend AS04 Non-Attend AS04 Attend 

AS02 Attend AS02 Attend AS04 Attend AS04 Attend AS04 Attend 

AS02 Non-Attend AS02 Attend AS04 Attend AS04 Attend AS04 Non-Attend 

AS02 Attend AS02 Non-Attend AS04 Non-Attend AS04 Non-Attend AS04 Non-Attend 

 

Download attend_grade.xlsx from online. Import data (“attend_grade.xlsx”) into R commander:  

Data→Import data→from Excel file… (name it “Attend”) 

The data set consists of eight variables (columns) and 85 instances (rows). The variable “Section” 

indicating whether the student is in AS02 or AS04, “Attend” indicating whether the student attends 

lectures regularly or not; “Midterm”, “Homework”, “LabA”, “Labexam”, “Finalexam”, “Grade” are the 

student’s grades in midterm exam, homework assignments, lab assignments, lab exam, final exam, and 

the final grade.   
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(a) What is the overall attendance rate in the two sections? 

1. Statistics→Summaries→Frequency Distributions 

2. In the “Frequency Distributions” window, choose “Attend” as the variable. Click OK. 

 

  
 

There are 58+27=85 students altogether in both sections and 58 students attend lectures regularly. 

Therefore, the overall attendance rate is 58/85=0.6824 which is 68.24%. 

(b) Test at the 5% significance level whether the overall attendance rate is below 80%. 

1. Statistics→Proportions→Single-sample proportion test… 

2. In the “Single-Sample Proportion Test” window, choose “Attend” as the variable.  

3. Click “Options”. In the “Options” window, choose “Population proportion<p0” as the 

Alternative Hypothesis. Specify the hypothesized value “p=0.8” under the “Null 

hypothesis”. That is 𝑝0 = 0.8. Type 0.95 in the box under “Confidence Level”. Under “Type 

of Test”, check “Normal approximation”. Click OK. 

4. Click OK. 
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Steps: 

• Hypotheses.  𝐻0: 𝑝 ≥ 0.8 versus 𝐻𝑎: 𝑝 < 0.8. 

• The significance level is 𝛼 = 0.05. 

• Compute the value of the test statistic: 𝑧𝑜 = −√7.3529 = −2.71162.  
Note: the computer output provides the chi-square score 7.3529 which is the square of 
the observed test statistic 𝒛𝒐. 

We can double check that the test statistic 𝑧𝑜 =
𝑝−𝑝0

√𝒑𝟎(1−𝒑𝟎)

𝑛

=
58

85
−0.8

√
𝟎.𝟖(1−𝟎.𝟖)

85

= −2.71163. 

        Note that 𝑧𝑜
2 = (−2.71163)2 = 7.3529 which is the chi-square score.  

• The P-value= 𝑃(𝑍 ≤ 𝑧𝑜) = 𝑃(𝑍 ≤ −2.7116) = 0.003348 

• Since P-value=0.003348 < 0.05 (𝛼), reject 𝐻0. 

• Conclusion: At 5% significance level, the data provide sufficient evidence that overall 

attendance rate is below 80%. 

 

(c) Obtain a confidence interval corresponding to the test in part (b). 

For a left-tailed test at the 5% significance level, the corresponding interval should be a 95% lower-

tailed interval, which is (0, 0.7586904) obtained from the computer output. 

Interpretation: we can be 95% confident that the overall attendance rate is below 0.75869, i.e., 

75.869%. 

 

(d) Does the interval in part (c) support the conclusion in part (b)? 

Yes. In part (b), we reject 𝐻0 and claim that 𝑝 < 0.8. In part (c), since the interval does not contain 

𝑝0 = 0.8 and the entire interval is below 0.8, we can claim that 𝑝 < 0.8 with 95% confidence, which 

supports the results obtained in part (c). 

7.2 TWO-PROPORTION Z TEST & Z INTERVAL BASED ON TWO INDEPENDENT SAMPLES 
For independent samples of size 𝑛1 and 𝑛2 from two populations, a point estimate for the difference 

between two population proportions (𝑝1 − 𝑝2) is the difference between the sample proportions 

(�̂�1 − �̂�2) where �̂�1 =
𝑥1

𝑛1
, �̂�2 =

𝑥2

𝑛2
 , and x1 and x2 are the number of successes in their samples.  

7.2.1 Two-Proportion Z Interval 

Assumptions: 



84 

1. Both samples are simple random samples from their own populations. 

2. The two samples are independent. 

3. Large samples, all the number of successes and the number of failures 𝑥1, 𝑛1 − 𝑥1, 𝑥2, and 𝑛2 − 𝑥2 

are at least 5. 

 

A (1 − 𝛼) ×  100% confidence interval for the difference between the population proportion (𝑝1 − 𝑝2) 

is: 

(�̂�1 − �̂�2) ± 𝑧𝛼/2√
�̂�1(1 − �̂�1)

𝑛1
+

�̂�2(1 − �̂�2)

𝑛2
,    �̂�1 =

𝑥1

𝑛1
, �̂�2 =

𝑥2

𝑛2
 

where 𝑧𝛼/2 is the 𝑧 score such that the area to its right is 
𝛼

2
 under the standard normal curve. This is a 

two-tailed interval.  

A (1 − 𝛼) ×  100% upper-tail confidence interval is ((�̂�1 − �̂�2) − 𝑧𝜶√
𝑝1(1−𝑝1)

𝑛1
+

𝑝2(1−𝑝2)

𝑛2
, ∞). 

And a (1 − 𝛼) ×  100% lower-tail confidence interval is (−∞, (�̂�1 − �̂�2) + 𝑧𝜶√
𝑝1(1−𝑝1)

𝑛1
+

𝑝2(1−�̂�2)

𝑛2
). 

7.2.2 Two-Proportion Z Test  

Assumptions: 

1. Both samples are simple random samples from their own populations. 

2. The two samples are independent. 

3. Large samples, all the number of successes and the number of failures 𝑥1, 𝑛1 − 𝑥1, 𝑥2, and 𝑛2 − 𝑥2 

are at least 5. 

 

Steps to perform a two-proportion 𝒛 test:  

1. Set up the hypotheses: 

𝐻0: 𝑝1 = 𝑝2 𝐻0: 𝑝1 ≤ 𝑝2 𝐻0: 𝑝1 ≥ 𝑝2 

𝐻𝑎: 𝑝1 ≠ 𝑝2 𝐻𝑎: 𝑝1 > 𝑝2 𝐻𝑎: 𝑝1 < 𝑝2 

 

2. State the significance level 𝛼. 

3. Compute the value of the test statistic:  

𝑧𝑜 =
�̂�1 − �̂�2

√�̂�𝑝(1 − �̂�𝑝)√
1

𝑛1
+

1
𝑛2

 with  �̂�𝑝 =
𝑥1 + 𝑥2

𝑛1 + 𝑛2
, �̂�1 =

𝑥1

𝑛1
, �̂�2 =

𝑥2

𝑛2
  

4. Find the P-value or rejection region: 

 𝐻0: 𝑝1 = 𝑝2 𝐻0: 𝑝1 ≤ 𝑝2 𝐻0: 𝑝1 ≥ 𝑝2 

 𝐻𝑎: 𝑝1 ≠ 𝑝2 𝐻𝑎: 𝑝1 > 𝑝2 𝐻𝑎: 𝑝1 < 𝑝2 

P-value 2𝑃(𝑍 ≥ |𝑧𝑜|) 𝑃(𝑍 ≥ 𝑧𝑜) 𝑃(𝑍 ≤ 𝑧𝑜) 

Rejection region 𝑍 ≥ 𝑧𝛼/2 or 𝑍 ≤ −𝑧𝛼/2 𝑍 ≥ 𝑧𝛼 𝑍 ≤ −𝑧𝛼 

 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝑧𝑜 falls in the rejection region. 

6. Conclusions. 
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Example: Two-Proportion Z Test and Z Interval 

Revisit the data set attend_grade.xlsx (which you imported into R in the previous section) about the 

effect of attending lecture on grades. There are two sections: AS02 and AS04. Some students attend 

lectures regularly and some do not in both sections. We are interested in the attendance rate.  

(a) What are the attendance rates in sections AS02 and AS04 respectively? 

1. Statistics→Contingency tables→Two-way table… 

2. In the “Two-Way Table” window, choose “Section” as the row variable and “Attend” as the 

column variable. 

3. Check “Statistics”. In the “Statistics” window, select “Row percentage” under “Compute 

Percentages”. Click OK. 

4. Click OK. 

Note that we chose “Section” as the row variable and we want the percentage of attendees 

within each section; therefore, we need to calculate the row percentages. 

 

  

 

 

 
The attendance rate in AS02 is 

  �̂�1 =
𝑥1

𝑛1
=

34

46
= 0.7391 which is 73.91%. 

 
The attendance rate in AS04 is 

  �̂�1 =
𝑥2

𝑛2
=

24

39
= 0.6154 which is 61.54%. 

 

 

(b) Test at the 1% significance level whether the attendance rates are different in both sections. 

1. Statistics→Proportions→Two-sample proportion test… 

2. In the “Two-Sample Proportion Test” window, choose “Section” as the row variable and 

“Attend” as the column variable. Click “Options”. In the “Options” window, choose 

“Two Sided” as the Alternative Hypothesis. Type 0.99 in the box under “Confidence 

Level”. Under “Type of Test”, check “Normal approximation”. Click OK. 

3. Click OK. 
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Steps: 

• Hypotheses.  𝐻0: 𝑝1 = 𝑝2 versus 𝐻𝑎: 𝑝1 ≠ 𝑝2, where  𝑝1 is the attendance rate of section 
AS02 and  𝑝2 is the attendance rate of section AS04. 

• The significance level is 𝛼 = 0.01. 

• Compute the value of the test statistic: 𝑧𝑜 = √1.4911 = 1.2211 .  
Note: the computer output provides the chi-square score 1.4911 which is the square of the 
observed test statistic 𝑧𝑜. 
We can double check that the test statistic: 

 𝑧𝑜 =
𝑝1−𝑝2

√𝑝𝑝(1−𝑝𝑝)√
1

𝑛1
+

1

𝑛2

=
0.7391304−0.6153846

√0.682353(1−0.682353)√
1

46
+

1

39

= 1.2211, with 

 �̂�𝑝 =
𝑥1+𝑥2

𝑛1+𝑛2
=

34+24

46+39
= 0.682353, �̂�1 =

𝑥1

𝑛1
=

34

46
= 0.7391304, �̂�2 =

𝑥2

𝑛2
=

24

39
= 0.6153846. 

 

• The P-value= 2𝑃(𝑍 ≥ |𝑧𝑜|) = 2𝑃(𝑍 ≥ 1.2211) = 0.222. 

• Since P-value=0.222 > 0.01 (𝛼), we cannot reject 𝐻0. 

• Conclusion: At the 1% significance level, the data do not provide sufficient evidence that the 

attendance rates are different in both sections. 

 

(c) Obtain a confidence interval corresponding to the test in part (b).  

For a two-tailed test at 1% significance level, the corresponding interval is a 99% two-sided 

interval for 𝑝1 − 𝑝2 which is (-0.1371712, 0.3846628) based on the computer output. 
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Interpretation: We can be 99% confident that 𝑝1 − 𝑝2 is somewhere between -0.1372 and 

0.3847. That means, we can be 99% confident that the attendance rate of AS02 is between 

13.72% lower to 38.47% higher than that of AS04.  

 

We can double check that a 99% confidence for 𝑝1 − 𝑝2 is 

(�̂�1 − �̂�2) ± 𝑧𝛼/2√
�̂�1(1−�̂�1)

𝑛1
+

𝑝2(1−𝑝2)

𝑛2
= (0.7391304 − 0.6153846) ±

2.575√
0.7391304(1−0.7391304)

46
+

0.6153846(1−0.6153846)

39
= (−0.1370872, 0.3845788 ) 

 

This is a little bit off due to rounding.  

 

(d) Does the interval in part (c) support the conclusion in part (b)? 

Yes. In part (b), we cannot reject 𝐻0 and claim that the two attendance rates are significantly 

different. In part (c), since the interval contains 0, there is no significant difference between the 

attendance rates in both sections. 
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LAB 8 CHI-SQUARE TESTS 

Lab 7 covers 𝒛 test and 𝒛 interval for one and two proportions. Chi-square tests should be used when 

more than two proportions are compared. 

8.1 CHI-SQUARE GOODNESS-OF FIT TEST FOR ONE CATEGORICAL OR DISCRETE VARIABLE 
The chi-square goodness-of-fit test can be applied to a categorical variable or a discrete quantitative 

variable that has only finitely possible values. The objective of a chi-square goodness-of-fit test is to test 

whether the variable follows the probability distribution specified in the null hypothesis 𝐻0. 

Assumptions: 

1. All expected frequencies are at least 1. 

2. At most 20% of the expected frequencies are less than 5. 

3. Simple random sample (if you need to generalize the conclusion to a larger population) 

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in 

those cells larger. 

 

Before running a chi-square goodness-of-fit test, we should first check the assumptions. Calculate the 

expected frequency for each possible value of the variable using 𝐸 = 𝑛𝑝, where 𝑛 is the total number of 

observations and 𝑝 is the relative frequency (or probability) specified in the null hypothesis. Check 

whether the expected frequencies satisfy assumptions 1 and 2. If not, consider combining some cells. 

Steps to perform a chi-square goodness-of-fit test:  

1. Set up the hypotheses:  

𝐻0: The variable has the specified distribution 

            𝐻𝑎: The variable does not have the specified distribution 

 

2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝜒𝑜
2 = ∑

(𝑂−𝑬)2

𝑬all cells   with 𝑑𝑓 = 𝑘 − 1. 

4. Find the P-value or rejection region based on the 𝜒2curve with 𝑑𝑓 = 𝑘 − 1. 

 

P-value 𝑃(𝜒2 ≥ 𝜒𝑜
2)      the area to the right of 𝜒𝑜

2 under the curve 

Rejection region 𝜒2 ≥ 𝜒𝛼
2           the region to the right of 𝜒𝛼

2, the area is 𝛼 

 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝜒𝑜
2 falls in the rejection region. 

6. Conclusions. 

 

Example: Chi-square goodness-of-fit test 

According to the results of the Federal election in 2015, 31.9% of votes supported Conservative, 39.5% 

supported Liberal, 19.7% supported New Democratic (NDP), 4.7% supported Bloc Québécois, and 3.4% 

supported Green (data from Wikipedia).  

 

Federal proportions are summarized in this table. 
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Parties Conservative Green Liberal NDP Bloc Québécois Others 

Proportion (𝑝) 0.319 0.034 0.395 0.197 0.047 0.008 

 

Thirty-seven students who voted in my Stat151 class responded to the online survey and their vote 

counts are summarized in the following table:  

Parties Conservative Green Liberal NDP Bloc Québécois Others 

Counts 9 2 17 6 0 3 

 

Test at the 5% significance level whether the class has a different preference pattern from the whole 

nation (2015 election). 

 

We check the assumptions. The expected frequencies (counts 𝐸 = 𝑛𝑝 = 37 × 𝑝) for the outcome cells 

when n = 37 are:  

 

Parties Conservative Green Liberal NDP Bloc Québécois Others 

Proportion (𝑝) 0.319 0.034 0.395 0.197 0.047 0.008 

Expected Counts 11.803 1.258 14.615 7.289 1.739 0.296 

 

Here we have one outcome cell with an expected count below 1, which violates an assumption.  

Furthermore, with 𝑘 = 6 outcome cells, we wish to assume at most 6 × 0.2 = 1.2 cells with expected 

counts less than 5, and we have three cells less than 5.  Also, our survey was taken in Alberta and no 

Bloc Québécois run in Alberta (although a student with a home riding of Quebec might have still voted 

that way). 

 

We would like to do a test, so we need to combine some cells.  Federally, we combine the cells “Green”, 

“Bloc Québécois” and “Others” above and name the combined party “Others”. In our sample data set, 

we also merge “Green” and “Others” and name the combined party “Others”. This will lead us to have k 

= 4 outcomes for our federal population and k = 4 cell outcomes for our survey sample data, as follows. 

 

As a result, the expected and observed frequencies are summarized as follows: 

 

Parties Proportion 𝑝 Observed (𝑂) Expected (E) 
𝐸 = 𝑛𝑝 = 37 × 𝑝 

Conservative 0.319 9 37 × 0.319 = 11.803 
Liberal 0.395 17 37 × 0.395 = 14.615 

NDP 0.197 6 37 × 0.197 = 7.289 

Others 0.089 = 0.034 + 0.047 + 0.008 2+3=5 37 × 0.089 = 3.293 

 Sum=1 Sum=37 Sum=37 

 

Now we have no cells with an expected count below 1, and 1 cell with an expected count below 5. So, 

we actually have 25% of our cells with an expected value below 5, which exceeds the assumption 

requirement that no more than 20% of our cells have an expected value below 5, but it is close, and we 

proceed for educational purposes. 
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The file “survey.xlxs” contains our sample data from the students.  A column called “MergedParty” 

contains the data of interest (where the Green and Other cells have been renamed to “Others”). 

 

We import the data (“survey.xlsx”) into R commander and perform the test:  

Data→Import data→from Excel file… (name it “Survey”) 

Use R commander to run the chi-square goodness-of-fit test. 

1. Statistics→Summaries→Frequency distributions… 

2. In the “Frequency Distributions” window, choose “Merged.Party” as the variable. Check “Chi-

square goodness-of-fit test (for one variable only)”. Click OK. 

3. In the “Goodness-of-Fit Test” window, specify the hypothesized proportions:  0.319 for 

Conservative, 0.395 for Liberal, 0.197 for NDP, and 0.089 for Others. Click OK. 

 

  

 

Steps to perform a chi-square goodness-of-fit test:  

1. Set up the hypotheses:  
     𝐻0: 𝑝𝐶 = 0.319,  𝑝𝐿 = 0.395,  𝑝𝑁𝐷𝑃 = 0.197,  𝑝𝑂𝑡ℎ𝑒𝑟𝑠 = 0.089 

            𝐻𝑎: At least one proportion is different the ones specified under  𝐻0 
 
2. The significance level is 𝛼 = 0.05. 

3. The test statistic: 𝜒𝑜
2 = ∑

(𝑂−𝑬)2

𝑬all cells = 2.1677, with 𝑑𝑓 = 𝑘 − 1 = 4 − 1 = 3. 
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4. Find the P-value. Chi-square tests are always right tail.  
P-value=  𝑃(𝜒2 ≥ 𝜒𝑜

2) = 𝑃(𝜒2 ≥ 2.1677) = 0.5383.             
5. Decision: We do not reject the null 𝐻0 since P-value= 0.5383 > 0.05(𝛼). 
6. Conclusion: At the 5% significance level, we do not have sufficient evidence that the class has a 

different preference pattern from the whole nation (2015 election). 

Another way to conduct a chi-square goodness-of-fit without the data is to type commands in the R 
Script window. We first need to let R commander know the proportions under the null and the observed 
counts. 

1. Type pvec=c(0.319,0.395,0.197,0.089) in the R Script Window, click “Submit”. 

2. Type cvec=c(9,17,6,5) in the R Script Window, click “Submit”. 

3. Type chisq.test(cvec,p=pvec) in the R Script Window, click “Submit”. 

Note: for each line of the commands, put the mouse at the end of each line and click “Submit” to 
execute the command. 

 

Computer output: we get the chi-square score is 2.1677, df=3, and p-value=0.5383, the same as the 
results obtained before in which we use the data.  
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8.2 CHI-SQUARE INDEPENDENCE TEST 
The chi-square independence test is used to test whether two categorical variables of a population are 

related (associated) or independent.  

Assumptions: 

1. All expected frequencies are at least 1. 

2. At most 20% of the expected frequencies are less than 5. 

3. Simple random sample (if you need to generalize the conclusion to a larger population) 

Note: if the assumption 1 or 2 is violated, one can consider combining the cells to make the counts in 

those cells larger. 

 

Before conducting a chi-square independence test, we first check the assumptions. Calculate the 

expected frequency for each possible value of the variable using 𝐸 =
(r𝑡ℎ row total)×(𝑐th column total)

𝑛
, 

where 𝑛 is the total number of observations. Check whether the expected frequencies satisfy 

assumptions 1 and 2. If not, consider combining some cells. 

 

Steps to perform a chi-square independence test:  

1. Set up the hypotheses:  
      𝐻0: The two variables are independent 

 𝐻𝑎: The two variables are 𝐚ssociated 
 
2. State the significance level 𝛼. 

3. Compute the value of the test statistic: 𝜒𝑜
2 = ∑

(𝑂−𝑬)2

𝑬all cells   with 𝑑𝑓 = (𝑟 − 1) × (𝑐 − 1), where 

𝐸 =
(r𝑡ℎ row total)×(𝑐th column total)

𝑛
, 𝑟 is the number of rows and 𝑐 is number of columns of the cells. 

4. Find the P-value or rejection region based on the 𝜒2curve with 𝑑𝑓 = (𝑟 − 1) × (𝑐 − 1). 

P-value 𝑃(𝜒2 ≥ 𝜒𝑜
2)      the area to the right of 𝜒𝑜

2 under the curve 

Rejection region 𝜒2 ≥ 𝜒𝛼
2           the region to the right of 𝜒𝛼

2, the area is 𝛼 

 

5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝜒𝑜
2 falls in the rejection region. 

6. Conclusions. 

Example: Chi-square Independence Test  

Note: Data set is the Focus database described on Page 34, Introductory Statistics, 10th Edition (2016), 

by Neil A. Weiss, Pearson.  

The Focus database contains information of a sample of 200 undergraduate students at the University of 

Wisconsin-Eau Claire. It has 13 variables including Sex, School/College, Classification (freshman, 

sophomore, junior, senior), ACT English Score, ACT math Score, ACT composite Score, and etc. 

Test at the 5% significance level whether “Sex” and “College” are associated. 

Download focus.xlsx from online and import the data into R commander:  

Data→Import data→from Excel file… (name it “focus”) 
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Use R-commander to run the chi-square goodness-of-fit test. 

1. Statistics→Contingency tables→Two-way table… 

2. In the “Two-Way Table” window, choose “SEX” as the row variable and “COLLEGE” as the 

column variable.  

3. In the Statistics window of the “Two-Way Table” window, check “Print Expected Frequencies” 

and “Components of chi-square statistic”.   

4. Click OK. 

 

 

Computer Output: 
 

 
 

 
 

 

Steps to perform a chi-square independence test:  

1. Set up the hypotheses:  
      𝐻0: The two varibles are independent 

 𝐻𝑎: The two variables are 𝐚ssociated 
 
2. The significance level is 𝛼 = 0.05. 

3. The test statistic: 𝜒𝑜
2 = ∑

(𝑂−𝑬)2

𝑬all cells = 20.112,  
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with 𝑑𝑓 = (𝑟 − 1) × (𝑐 − 1) = (2 − 1) × (5 − 1) = 4. 
4. Find the P-value. Chi-square tests are always right tail.  

P-value=  𝑃(𝜒2 ≥ 𝜒𝑜
2) = 𝑃(𝜒2 ≥ 20.112) = 0.0004746.             

5. Decision: We do not reject the null 𝐻0 since P-value= 0.0004746 < 0.05(𝛼). 
6. Conclusion: At the 5% significance level, we have sufficient evidence that “Sex” and “College” are 

associated, i.e., female and male students have significantly difference preference in choosing 
school/college. 

 
Notice that all the expected cell values are above 1, so this assumption holds.  Notice also the warning 
that the expected frequency for the Male and Nursing cell is below 5, but only 10% (one out of ten) of 
our expected cell frequencies are below 5, so this assumption  holds.   
 
The fact that there are no observations in the Male and Nursing Cell is of note.  An examination of the 
components of the chi-square test statistic does indicate that more females than expected were in 
nursing and less males than expected were in nursing.  We also note that less females than expected 
were in education and more males than expected were in education.  These four cells made the largest 
contributions towards obtaining a test statistic value that was large and led us to a significant result. 
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LAB 9 SIMPLE LINEAR REGRESSION 

This lab covers when and how we could model the relationship between two quantitative variables 

using a straight line, which is called a simple linear regression model; and how to conduct a hypothesis 

test and obtain a confidence interval for the slope of the regression model. 

The following table and scatter plot show the relationship between the price (in $1000) and the age (in 
years) of 15 used cars of a particular make and model.  Download the dataset car.xls from online and 
then import it into R commander.   
 

 

Age (𝑥, in year) Price (𝑦, in $1000) 

1 13.990 

1 13.495 

3 12.999 

4 9.500 

4 10.495 

5 8.995 

5 9.495 

6 6.999 

7 6.950 

7 7.850 

8 6.999 

8 5.995 

10 4.950 

10 4.495 

13 2.850 
 

 

 

 

Example: Simple Linear Regression Model 

(a) Import the data into R commander and re-produce the scatter plot. Could we use a straight line 

�̂� = 𝑏0 + 𝑏1𝑥 to model relationship between price and age of the used cars? 

Data→Import data→from Excel file… (name it “car”)  

 Draw the scatter plot: 

1. Graphs→Scatterplot… 

2. In the “Scatterplot“ window, select “age” as x-variable and “price” as y-variable. 

3. Click OK. 

Note: The price is calculated as the original price divided by 1000. 

Since all the data points are roughly on a straight line, we can use a straight line �̂� = 𝑏0 + 𝑏1𝑥 to model 

relationship between price and age of the used cars. 
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(b) Write down the least-squares regression equation. 

Fit a regression model and obtain the least squares straight line: 

1. Statistics→Fit models→Linear regression… 

2. In the “Linear Regression”, select “price” as the Response variable (dependent 

variable) and “age” as the Explanatory variable (independent variable). 

3. Click OK. 

 
 

The values of the intercept 𝑏0 and the slope 𝑏1 are given in the “Estimate” column. Based 

on the computer outputs, we have 𝑏0 = 14.28595 and 𝑏1 = −0.95905, and the fitted 

least-squares regression equation is  

�̂� = 𝑏0 + 𝑏1𝑥 ⟹  pricê = 14.28595 + (−0.95905) × age = 14.28595 − 0.95905 × age 
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(c) Obtain and interpret the coefficient of determination 𝑟2. 

Based on the computer outputs, the coefficient of determination 𝑟2 = 0.9443. 

Interpretation: 94.43% of variation in the observed price of the used cars is due to the age of 

the used cars and can be explained by the fitted regression equation pricê = 14.28595 −

0.95905 × age. 

 

(d) Obtain and interpret the correlation coefficient 𝑟. 
Since the correlation coefficient 𝑟 and the slope 𝑏1 have the same sign, and 𝑏1 = −0.95905 

which is negative, 𝑟 = −√𝑟2 = −√0.9443 = −0.9718. 

Interpretation: There is a strong, negative, linear association between price and age of the used 

cars. 

 

(e) Test at the 5% significance level whether age is a useful predictor for the price of a used car. 

Steps: 

1. Set up the hypotheses. 𝐻0: 𝛽1 = 0 versus 𝐻𝑎: 𝛽1 ≠ 0. 
2. The significance level is 𝛼 = 0.05. 

3. Compute the value of the test statistic: 𝑡𝑜 =
𝑏1
𝑠𝑒

√𝑆𝑥𝑥

= −14.85 with 𝑑𝑓 = 𝑛 − 2 = 13. 

4. Find the P-value. For a two tailed test with 𝑑𝑓 = 13,  

P-value=2𝑃(𝑡 ≥ |𝑡𝑜|) = 2𝑃(𝑡 ≥ 14.158) = 1.56 × 10−9.   

5. Decision: reject the null 𝐻0 since P-value= 1.56 × 10−9 < 0.05(𝛼).  

6. Conclusion: At the 5% significance level, we have sufficient evidence that age is a useful predictor for 

the price of a used car. 

 

 

 

 



98 

      

LAB 10 ONE-WAY ANOVA  

The two-sample 𝑡 test can be used in comparing two population means based on two independent 

samples.   

When comparing 𝑘 (𝑘 > 2) population means based on 𝑘 independent samples, a one-way ANOVA can 

be used. ANOVA stands for ANalysis Of VAriance. This lab shows how to conduct a one-way ANOVA F 

test based on the computer output.  

Let 𝜇1, 𝜇2, ⋯ , 𝜇𝑘  be the population means of the 𝑘 populations, respectively.  

The hypotheses of one-way ANOVA are formulated as  

• 𝐻0: all means are equal, i.e., 𝜇1 =  𝜇2 =  ⋯ =  𝜇𝑘 

• 𝐻𝑎: not all the means are equal. 

 

 

In a two-sample t test, inference about the population means is based on two independent samples 

from two populations.  In the ANOVA F test, inference about population means is based on 𝑘 

independent simple random samples from 𝑘 populations.  

If 𝐻0: 𝜇1 =  𝜇2 =  ⋯ =  𝜇𝑘  is true, the sample means �̅�1, �̅�2, ⋯ , �̅�𝑘 should be close to one another 

and hence the variation between sample means should be small. We should reject 𝐻0: 𝜇1 =  𝜇2 =

 ⋯ =  𝜇𝑘  if the sample means �̅�1, �̅�2, ⋯ , �̅�𝑘 are very different. 

Assumptions for One-way ANOVA F Test: 

• Normal populations: for each population, the variable of interest is normally distributed. 

• Equal variances: the variances of the variable of interest are the same for all populations. 

• Independent samples: the samples from different populations are independent of one another. 
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• Simple random samples: the samples taken from the 𝑘 populations should be simple random 

samples. 

Steps: 

1. Set up the hypotheses:  
𝐻0: 𝜇1 =  𝜇2 =  ⋯ =  𝜇𝑘  

     𝐻𝑎: Not all means are equal 
2. State the significance level 𝛼. 
3. Calculate the sums of squares SST, SSTR, SSE and the mean squares MSTR, MSE. Find the test 

statistic, 𝐹𝑜, and show the results in an ANOVA table: 
 

Source 𝑑𝑓 𝑆𝑆 
𝑀𝑆 =

𝑆𝑆

𝑑𝑓
 

F-statistic p-value 

Treatment 𝑘 − 1 𝑆𝑆𝑇𝑅 
𝑀𝑆𝑇𝑅 =

𝑆𝑆𝑇𝑅

𝑘 − 1
 𝐹𝑜 =

𝑀𝑆𝑇𝑅

𝑀𝑆𝐸
 

𝑃(𝐹 ≥ 𝐹𝑜) 

Error 𝑛 − 𝑘 𝑆𝑆𝐸 
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘
 

  

Total 𝑛 − 1 𝑆𝑆𝑇    

 
4. Find the P-value or rejection region based on the F density curve with degrees of freedom 

𝑑𝑓𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑑𝑓𝑛  = 𝑘 − 1, 𝑑𝑓𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑑𝑓𝑑  = 𝑛 − 𝑘. 

P-value 𝑃(𝐹 ≥ 𝐹𝑜)      the area to the right of 𝐹𝑜 under the curve 

Rejection region 𝐹 ≥ 𝐹𝛼           the region to the right of the critical value 𝐹𝛼  

 
5. Reject the null 𝐻0 if P-value≤ 𝛼 or 𝐹𝑜 falls in the rejection region. 
6. Conclusions. 
 

Example: One-way ANOVA F Test 

A student performed an experiment to compare download speed at different times of the day. He 

placed a file on a remote server and then proceeded to download the file at three different time periods 

of the day: 7 a.m., 5 p.m., and 12 a.m. He downloaded the file 48 times, 16 times at each time period, 

and recorded the download time in seconds (De Veaux, Velleman, & Bock, 2008). Does the data below 

provide sufficient evidence that there is a difference between the mean download times at 7 a.m., 5 

p,m, and 12 a.m.? Test at the 1 % significance level. The data can be found online in the Excel file 

downloading.xlsx. 

Time of Day Time (Sec) Time of Day Time (Sec) Time of Day Time (Sec) 

Early (7AM) 68 Evening (5 PM) 299 Late Night (12 AM) 216 

Early (7AM) 138 Evening (5 PM) 367 Late Night (12 AM) 175 

Early (7AM) 75 Evening (5 PM) 331 Late Night (12 AM) 274 

Early (7AM) 186 Evening (5 PM) 257 Late Night (12 AM) 171 

Early (7AM) 68 Evening (5 PM) 260 Late Night (12 AM) 187 

Early (7AM) 217 Evening (5 PM) 269 Late Night (12 AM) 213 

Early (7AM) 93 Evening (5 PM) 252 Late Night (12 AM) 221 

Early (7AM) 90 Evening (5 PM) 200 Late Night (12 AM) 139 
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Early (7AM) 71 Evening (5 PM) 296 Late Night (12 AM) 226 

Early (7AM) 154 Evening (5 PM) 204 Late Night (12 AM) 128 

Early (7AM) 166 Evening (5 PM) 190 Late Night (12 AM) 236 

Early (7AM) 130 Evening (5 PM) 240 Late Night (12 AM) 128 

Early (7AM) 72 Evening (5 PM) 350 Late Night (12 AM) 217 

Early (7AM) 81 Evening (5 PM) 256 Late Night (12 AM) 196 

Early (7AM) 76 Evening (5 PM) 282 Late Night (12 AM) 201 

Early (7AM) 129 Evening (5 PM) 320 Late Night (12 AM) 161 

 

Import the data into R: Data→Import data→from Excel file… (name it “downloading”) 

  

Conduct the one-way ANOVA F test in R: 
 
1. Statistics→Means→One-way ANOVA… 
2. In the “One-Way Analysis of Variance” 

window, choose “Time of Day” as the 
Group variable and “Time” as the 
Response Variable. 

3. Click OK. 
 

 
 

Computer outputs 

 

Steps to conduct a one-way ANOVA F-test: 

1. Hypotheses 

𝐻0: 𝜇1 =  𝜇2 =  𝜇3 
                 𝐻𝑎: Not all means are equal 

2. Significance level is 𝛼 = 0.01. 

3. Test statistic 𝐹𝑜 = 46.03 with 𝑑𝑓𝑛 = 𝑘 − 1 = 3 − 1 = 2, 𝑑𝑓𝑑 = 𝑛 − 𝑘 = 48 − 3 = 45. 

4. P-value= 𝑃(𝐹 ≥ 𝐹𝑜) = 𝑃(𝐹 ≥ 46.03) = 1.31 × 10−11 (given in the ANOVA table). 

5. Reject 𝐻0, since p-value=1.31 × 10−11 < 0.01 (𝛼). 

6. Conclusion: At the 1% significance level we have sufficient evidence that there is a significant 

difference between the mean downloading time at 7 a.m., 5 p.m., and 12 a.m. 

 


