12.6 Review Questions

  1. The data on monthly rents, in dollars, for independent random samples of newly completed apartments in the four U.S. regions are presented in the following table.
    Northeast Midwest South West
    1005 870 891 1025
    898 748 630 1012
    948 699 861 1090
    1181 814 1036 926
    1244 721 1269
    606

    Given the ANOVA table, test at the 5% significance level whether a difference exists in the mean rent of newly completed apartments in the four U.S. regions.

    Source df SS MS = [latex]\frac{SS}{df}[/latex] F-statistic P-value
    Region 3 SSTR = 400513 MSTR = 133504 [latex]F_o[/latex] = 7.541 0.0023
    Error 16 SSE = 283265 MSE = 17704
    Total 19 SST = 683778
  2. The following table gives the salaries (in thousand dollars) for computer science (CS) majors obtaining a bachelor’s degree, a master’s degree, or a Ph.D.
    Bachelor Master PhD
    50.8 65.8 73.3
    59.4 57.5 65.7
    55.9 66.9 71.7
    45.1 62.8 72.5
    54.1 68.5 73
    50.7 69.3 67.2
    46.8 61.5 67.5
    1. Fill in missing entries of the following ANOVA table.
      Source df SS MS = [latex]\frac{SS}{df}[/latex] F-statistic P-value
      Group k-1 = ? SSTR = ? [latex]\text{MSTR} = \frac{SSTR}{k-1} = 616.9[/latex] [latex]F_o = \frac{MSTR}{MSE} = 34.62[/latex] <0.0001
      Error nk = ? SSE = ? [latex]\text{MSE} = \frac{SSE}{n-k} = 17.8[/latex]
      Total n-1 = 20 SST = 1554.5
    2. Test at the 1% significance level whether a difference exists in mean salary for computer science (CS) majors obtaining a bachelor’s degree, a master’s degree, or a Ph.D.
Show/Hide Answer
  1. From the first table, we have [latex]k=4, n_1=5, n_2=6, n_3=4, n_4=5 \longrightarrow n=n_1+n_2+n_3+n_4=20[/latex].
    We assume the assumptions of the one-way ANOVA F test are satisfied. Steps of one-way ANOVA F test:
    Step 1: Hypotheses.
    [latex]H_0:[/latex] all means are equal, [latex]\mu_1=\mu_2=\mu_3=\mu_4[/latex]versus [latex]H_a:[/latex] not all means are equal, i.e., at least one pair of means are different.
    Step 2: Significance level [latex]\alpha=0.05.[/latex]
    Step 3: Test statistic [latex]F_o[/latex]=7.541 with degrees of freedom [latex]df_{TR}=k-1=4-1=3, df_E=n-k=20-4=16.[/latex]
    Step 4: P-value=0.0023.
    Step 5: Decision. Reject [latex]H_0[/latex] since P-value=0.0023 <0.01 [latex](\alpha)[/latex].
    Step 6: Conclusion. At the 5% significance level, we have sufficient evidence that a difference exists in the mean rent of newly completed apartments in the four U.S. regions.
    1. Source df SS MS=[latex]\frac{SS}{df}[/latex] F-statistic P-value
      Group k-1=? SSTR=? MSTR=[latex]\frac{SSTR}{k-1}=616.9[/latex] [latex]F_o=\frac{MSTR}{MSE}=34.62[/latex] <0.0001
      Error n-k=? SSE=? MSE=[latex]\frac{SSE}{n-k}=17.8[/latex]
      Total n-1=20 SST=1554.5

      From the first table, we have [latex]k=3, n_1=n_2=n_3=7 \Longrightarrow n=n_1+n_2+n_3=21[/latex].
      From the second table, we have [latex]df_{T}=n-1=19, SST=1554.5, MSTR=616.0, MSE=17.8[/latex].
      (1) [latex]df_{TR}=k-1=3-1=2.[/latex]

      (2) [latex]df_E=n-k=21-3=18[/latex] or [latex]df_E=df_T-df_{TR}=19-2=17.[/latex]

      (3) [latex]SSTR=MSTR\times df_{TR}=616.9\times 2=1233.8.[/latex]

      (4) [latex]SSE=MSE \times df_E=17.8 \times 18=320.4[/latex] or [latex]SSE=SST-SSTR=1554.5-1233.8=320.7.[/latex] The difference is due to rounding.

    2. We assume the assumptions of the one-way ANOVA F test are satisfied.
      Steps of one-way ANOVA F test:
      Step 1: hypotheses.[latex]H_0:[/latex] all means are equal, [latex]\mu_1=\mu_2=\mu_3[/latex] versus [latex]H_a:[/latex] not all means are equal, i.e., at least one pair of means are different.
      Step 2: Significance level [latex]\alpha=0.01.[/latex]
      Step 3: Test statistic [latex]F_o=34.62[/latex] with degrees of freedom [latex]df_{TR}=k-1=3-1=2, df_E=n-k=21-3=18.[/latex]
      Step 4: P-value <0.0001.
      Step 5: Decision. Reject [latex]H_0[/latex] since P-value<0.0001 <0.01 [latex](\alpha)[/latex].
      Step 6: Conclusion. At the 1% significance level, we have sufficient evidence that a difference exists in mean salary for computer science (CS) majors obtaining a bachelor’s degree, a master’s degree or a Ph.D.

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Introduction to Applied Statistics Copyright © 2024 by Wanhua Su is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.