13.8 Inferences for the Parameters in SLRM

There are three population parameters in the simple regression model (SLRM): the population intercept [latex]\beta_0[/latex], the population slope [latex]\beta_1[/latex] , and the standard deviation of the error [latex]\sigma[/latex]. The three population parameters can be estimated by the least-squares estimates:

  • [latex]b_0 = \bar{y} - b_1 \bar{x}[/latex]  estimates the population intercept [latex]\beta_0[/latex];
  • [latex]b_1 = \frac{S_{xy}}{S_{xx}}[/latex]  estimates the population intercept [latex]\beta_1[/latex];
  • the sample standard deviation of the residuals [latex]s_e = \sqrt{\frac{\sum (e_i - \bar{e})^2}{n-2}} = \sqrt{\frac{\sum e_i^2}{n-2}} = \sqrt{\frac{SSE}{n-2}}[/latex] estimates the standard deviation of the error term [latex]\sigma[/latex], where [latex]SSE = SST - SSR = SST - r^2 SST = S_{yy} - \frac{S_{xy}^2}{S_{xx} S_{yy}} S_{yy} = S_{yy} - b_1 S_{xy}[/latex].

We are especially interested in testing whether the slope parameter [latex]\beta_1[/latex] differs from 0. If [latex]\beta_1 = 0[/latex], the predictor variable [latex]x[/latex] provides no information about the conditional mean of [latex]Y[/latex], and hence there is no point fitting a regression model. Inferences about [latex]\beta_1[/latex] are based on the distribution of the least-squares slope [latex]b_1[/latex].

13.8.1 Distribution of the Least-squares Slope b1

In the previous example, a least-squares regression line was developed to predict the price of used cars with their ages; using a sample of 15 used cars, the fitted line had a slope of [latex]b_1 = -0.9432[/latex]. Does [latex]b_1 = -0.9432[/latex] provide evidence of a linear association between the price and age of all used cars? In order to answer this question, we need a better understanding of the distribution of [latex]b_1[/latex]. Suppose, for example, that we repeat this experiment 1000 times by obtaining 1000 samples of 15 used cars, fitting 1000 regression lines, and as such, getting 1000 different values of [latex]b_1[/latex], each of which is a point estimate of the population slope [latex]\beta_1[/latex]. The distribution of these 1000 values of [latex]b_1[/latex], therefore, provides an estimate of the true distribution of all such [latex]b_1[/latex]. The following histogram illustrates the distribution of 1000 values of [latex]b_1[/latex].

A histogram of the slope of b sub 1. The shape is close to normal. Image description available.
Figure 13.12: Distribution of the Least-Squares Slope b1. [Image Description (See Appendix D Figure 13.12)] Click on the image to enlarge it.
It can be shown that the distribution of [latex]b_1[/latex] is normal with

  • Mean: [latex]\mu_{b_1} = \beta_1[/latex].
  • Standard deviation: [latex]\sigma_{b_1} = \frac{\sigma}{\sqrt{S_{xx}}}[/latex].

That is [latex]b_1 \sim N(\beta_1, \frac{\sigma}{\sqrt{S_{xx}}})[/latex]. Thus, we can standardize  [latex]b_1[/latex] in order to obtain:  [latex]\frac{b_1 - \beta_1}{\frac{\sigma}{\sqrt{S_{xx}}}} \sim N(0, 1)[/latex].

When the standard deviation of the error term [latex]\sigma[/latex] is unknown, it can be estimated by the standard deviation of the residuals [latex]s_e[/latex]. This leads to the studentized variable

[latex]\frac{b_1 - \beta_1}{\frac{s_e}{\sqrt{S_{xx}}}} \sim t \text{ distribution with } df = n-2[/latex].

Hence, inferences about the slope parameter [latex]\beta_1[/latex] are based on a [latex]t[/latex] distribution with degrees of freedom [latex]n-2[/latex]. Note that we lose two degrees of freedom in finding [latex]b_0[/latex] and [latex]b_1[/latex].

13.8.2 t Test and t Interval for the Slope Parameter β1

Assumptions:

  1. The response variable (or the error term) is normally distributed.
  2. The standard deviation of the response variable (or error term) is the same for all values of the predictor variable.
  3. The observations are independent.
  4. The data come from a simple random sample.

Steps to perform a  test on the slope parameter [latex]\beta_1[/latex]:

  1. Set up the hypotheses:
    The predictor is useful
     positive association
    negative association
    [latex]H_0: \beta_1 = 0[/latex]
    [latex]H_0: \beta_1 \leq 0[/latex]
    [latex]H_0: \beta_1 \geq 0[/latex]
    [latex]H_a: \beta_1 \neq 0[/latex]
    [latex]H_a: \beta_1 > 0[/latex]
    [latex]H_a: \beta_1 < 0[/latex]
  2. State the significance level [latex]\alpha[/latex].
  3. Compute the test statistic: [latex]t_o = \frac{b_1}{\frac{s_e}{\sqrt{S_{xx}}}}[/latex]  with degree of freedom [latex]df = n-2[/latex].
  4. Find the P-value or rejection region
    The predictor is useful
    positive association
    negative association
    Null
    [latex]H_0: \beta_1 = 0[/latex]
    [latex]H_0: \beta_1 \leq 0[/latex]
    [latex]H_0: \beta_1 \geq 0[/latex]
    Alternative
    [latex]H_a: \beta_1 \neq 0[/latex]
    [latex]H_a: \beta_1 > 0[/latex]
    [latex]H_a: \beta_1 < 0[/latex]
    P-value
    [latex]2P(t \geq |t_o|)[/latex]
    [latex]P(t \geq t_o)[/latex]
    [latex]P(t \leq t_o)[/latex]
    Rejection region  [latex]t \geq t_{\alpha /2}[/latex] or [latex]t \leq - t_{\alpha /2}[/latex]
    [latex]t \geq t_{\alpha}[/latex]
    [latex]t \leq - t_{\alpha}[/latex]
  5. Reject the null [latex]H_0[/latex] if P-value [latex]\leq \alpha[/latex] or [latex]t_o[/latex] falls in the rejection region.
  6. Conclusion.

The [latex](1 - \alpha) \times 100\%[/latex] [latex]t[/latex] confidence interval for [latex]\beta_1[/latex]  corresponding to the [latex]t[/latex] test:

The predictor is useful positive association negative association
Null [latex]H_0: \beta_1 = 0[/latex] [latex]H_0: \beta_1 \leq 0[/latex] [latex]H_0: \beta_1 \geq 0[/latex]
Alternative [latex]H_a: \beta_1 \neq 0[/latex] [latex]H_a: \beta_1 > 0[/latex] [latex]H_a: \beta_1 < 0[/latex]
 CI [latex]\left( b_1 - t_{\alpha / 2} \frac{s_e}{\sqrt{S_{xx}}}, b_1 + t_{\alpha / 2} \frac{s_e}{\sqrt{S_{xx}}} \right)[/latex] [latex](b_1 - t_{\alpha} \frac{s_e}{\sqrt{S_{xx}}}, \infty )[/latex] [latex]( - \infty , b_1 + t_{\alpha} \frac{s_e}{\sqrt{S_{xx}}} )[/latex]
Decision Reject [latex]H_0[/latex] if the interval does not contain 0.

Example: t-Test and t Interval for the Slope Parameter [latex]\color{white}{\beta_1}[/latex]

Recall the used car example. We have the summaries

[latex]n = 15, \sum x_i = 92, \sum x_i^2 = 724, \sum y_i = 125, \sum y_i^2 = 1193, \sum x_i y_i = 616[/latex].

We can calculate:

[latex]\begin{align*}S_{xy} &= \sum x_i y_i - \frac{\left( \sum x_i \right) \left( \sum y_i \right) }{n} = 616 - \frac{92 \times 125}{15} = -150.667,\\S_{xx} &= \sum x_i^2 - \frac{ \left( \sum x_i\right)^2 }{n} = 724 - \frac{92^2}{15} = 159.733,\\S_{yy} &= \sum y_i^2 - \frac{ \left( \sum y_i \right)^2 }{n} = 1193 - \frac{125^2}{15} = 151.333.\end{align*}[/latex]

[latex]\begin{align*}b_1 &= \frac{S_{xy}}{S_{xx}} = \frac{-150.667}{159.733} = -0.9432; \\b_0&=\bar y-b_1\bar x=\frac{\sum y_i}{n}-b_1 \frac{\sum x_i}{n}=\frac{125}{15}-(-0.9432) \frac{92}{15}=14.118.\end{align*}[/latex]

And the least-square straight line is [latex]\widehat{\text{price}} = 14.118 - 0.9432 \times \text{age}[/latex].

  1. Test at the 5% significance level whether age is a useful predictor for the price of a used car.
    Steps:

    1. Set up the hypotheses. [latex]H_0: \beta_1 = 0[/latex] versus [latex]H_a: \beta_1 \neq 0[/latex].
    2. The significance level is [latex]\alpha = 0.05[/latex].
    3. Compute the value of the test statistic: [latex]t_o = \frac{b_1}{\frac{s_e}{\sqrt{S_{xx}}}}[/latex]  with [latex]df = n -2.[/latex] First, [latex]SSE = S_{yy} - b_1 S_{xy} = 151.333 - (-0.9432) \times (-150.667) = 9.224[/latex] so that [latex]s_e = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{9.224}{13}} = 0.842[/latex]. Therefore,

      [latex]t_o = \frac{b_1}{\frac{s_e}{\sqrt{S_{xx}}}} = \frac{-0.9432}{\left( \frac{0.842}{\sqrt{159.733}} \right)} = -14.158, df = n-2 = 15-2 = 13[/latex].

    4. Find the P-value. For a two-tailed test with [latex]df=13[/latex],
      P-value [latex]=2P(t \geq |t_o|) = 2P(t \geq 14.158) < 2 \times 0.0005 = 0.001[/latex], since [latex]t_{0.0005} = 4.221.[/latex]
    5. Decision: Reject the null [latex]H_0[/latex] since P-value [latex]< 0.001 < 0.05 (\alpha).[/latex]
    6. Conclusion. At the 5% significance level, we have sufficient evidence that age is a useful predictor of the price of a used car.
  2. Obtain a [latex]t[/latex] confidence interval for the slope parameter [latex]\beta_1[/latex] corresponding to the test in part (a).
    A 95% two-tailed interval corresponds to a two-tailed test at the 5% significance level. Therefore, since

    [latex]df = 13, \alpha = 0.05[/latex], and [latex]t_{\alpha / 2} = t_{0.025} = 2.160[/latex]

    It follows that a 95% confidence interval for [latex]\beta_1[/latex] is:

    [latex]b_1 \pm t_{\alpha / 2} \frac{s_e}{\sqrt{S_{xx}}} = (-0.9432) \pm 2.160 \times \frac{0.842}{\sqrt{159.733}} = (-1.087, -0.799)[/latex].

  3. Interpret the interval. Does it support the conclusions of the hypothesis test in part (a)?
    We are 95% confident that [latex]\beta_1[/latex] is somewhere between -1.087 and -0.799 ($1000 per year). Hence, we estimate that the mean price of used cars drops from $799 to $1087 when they get one year older.
    Yes, it supports the conclusions of the hypothesis test in part (a). The interval does not contain 0; which implies [latex]\beta_1 \neq 0[/latex] with 95% confidence. Therefore, the interval suggests age is a useful predictor for the price of used cars, which is the conclusion of the test in part (a).

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Introduction to Applied Statistics Copyright © 2024 by Wanhua Su is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.